We use moving frames to construct and classify the joint invariants and joint differential invariants of binary and ternary forms. In particular, we prove that the differential invariant algebra of ternary forms is generated by a single third order differential invariant. To connect our results with earlier analysis of Kogan, we develop a general method for relating differential invariants associated with different choices of cross-section.
This study deals with the determination of Lagrangians, first integrals, and integrating factors of the modified Emden equation by using Jacobi and Prelle–Singer methods based on the Lie symmetries and λ-symmetries. It is shown that the Jacobi method enables us to obtain Jacobi last multipliers by means of the Lie symmetries of the equation. Additionally, via the Lie symmetries of modified Emden equation, we analyze some mathematical connections between λ-symmetries and Prelle–Singer method. New and nontrivial Lagrangian forms, conservation laws, and exact solutions of the equation are presented and discussed.
The optimal control problems in economic growth theory are analyzed by considering the Pontryagin's maximum principle for both current and present value Hamiltonian functions based on the theory of Lie groups. As a result of these necessary conditions, two coupled first-order differential equations are obtained for two different economic growth models. The first integrals and the analytical solutions (closed-form solutions) of two different economic growth models are analyzed via the group theory including Lie point symmetries, Jacobi last multiplier, Prelle-Singer method, λ-symmetry and the mathematical relations among them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.