Using X-ray data for iodine-α-dextrin complexes and the results of quantum chemical ab initio restricted Hartree-Fock/3-21G(**) level calculations, a model of drug active complex (AC) Armenicum with anti-HIV action was proposed. It was suggested that the drug AC contains molecular iodine allocated inside of α-dextrin helix and coordinated by lithium halogenides and a protein component of lymphocyte ribosomes. The electronic structure of I(2) in this complex differs from its characteristics in complexes with organic ligands or the free I(2) . In the considered ACs, the molecular iodine displays acceptor (donor) properties toward the α-dextrins (lithium halogenides). A mechanism of Armenicum anti-HIV action is suggested. Under the influence of molecular iodine-containing drug AC, the structure of HIV DNA is modified-it becomes more π-donor-active against proteins and peptide nucleotides of viral DNA form a stable complex with molecular iodine and lithium halogenides.
Chromatographic analysis shows that the ionic nanostructured complex of the FS-1 drug contains nanocomplexes of α-dextrin with a size of ~40–48 Å. Based on good agreement between the UV spectra of the model structures and the experimental spectrum of the FS-1 drug, the structure of the active FS-1 nanocomplex is proposed. The structure of the active centers of the drug in the dextrin ring was calculated using the quantum-chemical approach DFT/B3PW91. The active centers, i.e., a complex of molecular iodine with lithium halide (I), a binuclear complex of magnesium and lithium containing molecular iodine, triiodide (II), and triiodide (III), are located inside the dextrin helix. The polypeptide outside the dextrin helix forms a hydrogen bond with dextrin in Complex I and coordinates the molecular iodine in Complex II. It is revealed that the active centers of the FS-1drug can be segregated from the dextrin helix and form complexes with DNA nucleotide triplets. The active centers of the FS-1 drug are only segregated on specific sections of DNA. The formation of a complex between the DNA nucleotide and the active center of FS-1 is a key stage in the mechanisms of anti-HIV, anti-coronavirus (Complex I) and antibacterial action (Complex II).
The interaction of molecular iodine with virus DNA nucleotide is studied by ab initio RHF/3-21G** method. Formation of the nucleoprotein complex of the HIV DNA, molecular iodine and the HIV-1 integrase co-factor is considered to cause the inhibition action of the integrase enzyme. Experimental data on the anti-HIV effect of the molecular iodine complex compounds and the results of calculations suggest that molecular iodine contained in iodine polymer complexes may be considered as a compound inhibiting the catalytic center of the integrase enzyme. Unlike the known integrase inhibitors, molecular iodine also changes the virus DNA structure and produces the N-I bond in the purine bases of adenosine and guanosine nucleotides
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.