Background: This study evaluated the effect of air-particle abrasion with different particle sizes on the surface roughness and phase transformation of yttria-stabilized tetragonal zirconia ceramics (Y-TZP). Methods: Eighty-four Y-TZP discs of 15 mm diameter and 1.0 mm thickness were fabricated. The samples were divided into four groups (n = 21): (1) air-particle abrasion with 30 lm CoJet sand blast coating agent (CoJet, 3M ESPE); (2) 50 lm Al 2 O 3 particles; (3) 110 lm Al 2 O 3 particles; and (4) 250 lm Al 2 O 3 particles. Each group was further divided into three subgroups each (n = 7) and treated for 5 seconds, 15 seconds and 30 seconds. Mean surface roughness was determined using a profilometer. The surfaces were analysed with a scanning electron microscope. XRD analysis was employed and the relative amount of the monoclinic phase was calculated. The results were statistically analysed by two-way analysis of variance (ANOVA, p < 0.05). Results: Air-particle abrasion with 250 lm Al 2 O 3 particles for 30 seconds had the highest surface roughness (p < 0.001) and a significantly higher amount of monoclinic phase compared to air-particle abrasion with 30 lm, 50 lm and 110 lm particles (p < 0.001). Conclusions: Duration and particle size of air-particle abrasion affects the roughness and phase transformation of Y-TZP. Longer treatment times with larger particles may result in degradation of material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.