What's new in Intelligent transportation Systems?T his article is a taxonomy of recent intelligent transportation systems (ITS) initiatives/projects in Europe, and it covers nearly all of the main segments of the transportation sector. The purpose is to appraise the milestones that have been reached so far in the area of ITS. Furthermore, this article will help in identifying directions for future research. By highlighting the potential advantages users get through deployed ITS solutions, this article stimulates the interest of users and relevant stakeholders in the uptake of this technology. Finally, it will also serve as a useful resource for those agents of the scientific community who are interested in taking part in the European Commission's (EC's) funded projects related to ITS.
Abstract-In this article, we have studied the statistical properties of the capacity of Nakagami-m channels when spatial diversity combining, such as maximal ratio combining (MRC) and equal gain combining (EGC), is employed at the receiver. The presented results provide insight into the statistical properties of the channel capacity under a wide range of fading conditions in wireless links using L-branch diversity combining techniques. We have derived closed-form analytical expressions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the channel capacity. The statistical properties of the capacity are studied for different values of the number of diversity branches and for different severity levels of fading. The analytical results are verified with the help of simulations. It is observed that increasing the number of diversity branches increases the mean channel capacity, while the variance and ADF of the channel capacity decreases. Moreover, systems in which the fading in diversity branches is less severe (as compared to Rayleigh fading) have a higher mean channel capacity. The presented results are very helpful to optimize the design of the receiver of wireless communication systems that employ spatial diversity combining.
Abstract. This paper 1 studies the influence of shadowing on the statistical properties of the channel capacity. The problem is addressed by using a Suzuki process as an appropriate statistical channel model for land mobile terrestrial channels. Using this model, exact solutions for the probability density function (PDF), cumulative distribution function (CDF), level-crossing rate (LCR), and average duration of fades (ADF) of the channel capacity are derived. The results are studied for different levels of shadowing, corresponding to different terrestrial environments. It is observed that the shadowing effect has a significant influence on the variance and the maximum value of the PDF and LCR of the channel capacity, but it has almost no impact on the mean capacity of the channel. The correctness of the theoretical results is confirmed by simulation using a stochastic channel simulator based on the sum-of-sinusoids principle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.