This paper copes with parameter-robust controller design for transportation system by multiple unmanned aerial vehicles. The transportation is designed in the form of string connection. Minimal state-space realization of slung-load dynamics is obtained by Newtonian approach with spherical coordinates. Linear quadratic Gaussian / loop transfer recovery (LQG/LTR) is implemented to control the position and attitude of all the vehicles and payloads. The controllers robustness against variation of payload mass is improved using parameter-robust linear quadratic Gaussian (PRLQG) method. Numerical simulations are conducted with several transportation cases. The result verifies that LQG/LTR shows fast performance while PRLQG has its strong point in robustness against system variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.