BackgroundJatropha curcas L. is promoted as an important non-edible biodiesel crop worldwide. Jatropha oil, which is a triacylglycerol, can be directly blended with petro-diesel or transesterified with methanol and used as biodiesel. Genetic improvement in jatropha is needed to increase the seed yield, oil content, drought and pest resistance, and to modify oil composition so that it becomes a technically and economically preferred source for biodiesel production. However, genetic improvement efforts in jatropha could not take advantage of genetic engineering methods due to lack of cloned genes from this species. To overcome this hurdle, the current gene discovery project was initiated with an objective of isolating as many functional genes as possible from J. curcas by large scale sequencing of expressed sequence tags (ESTs).ResultsA normalized and full-length enriched cDNA library was constructed from developing seeds of J. curcas. The cDNA library contained about 1 × 106 clones and average insert size of the clones was 2.1 kb. Totally 12,084 ESTs were sequenced to average high quality read length of 576 bp. Contig analysis revealed 2258 contigs and 4751 singletons. Contig size ranged from 2-23 and there were 7333 ESTs in the contigs. This resulted in 7009 unigenes which were annotated by BLASTX. It showed 3982 unigenes with significant similarity to known genes and 2836 unigenes with significant similarity to genes of unknown, hypothetical and putative proteins. The remaining 191 unigenes which did not show similarity with any genes in the public database may encode for unique genes. Functional classification revealed unigenes related to broad range of cellular, molecular and biological functions. Among the 7009 unigenes, 6233 unigenes were identified to be potential full-length genes.ConclusionsThe high quality normalized cDNA library was constructed from developing seeds of J. curcas for the first time and 7009 unigenes coding for diverse biological functions including oil biosynthesis were identified. These genes will serve as invaluable genetic resource for crop improvement in jatropha to make it an ideal and profitable crop for biodiesel production.
ABSTRACT. DNA barcoding is a desirable tool for medicinal product authentication. DNA barcoding is a method for species identification using short DNA sequences that are conserved within species, but variable between species. Unlike animals, there is no single universal DNA barcode locus for plants. Coding markers, matK and rbcL, and noncoding markers, trnH-psbA (chloroplast) and ITS2 (nuclear), have been reported to be suitable for the DNA barcoding of plants with varying degree of success. Sixty-four accessions from 20 species of the medicinal plant Cassia were collected, and analyzed for these 4 DNA barcoding markers. PCR amplification was 100% successful for all 4 markers, while intra-species divergence was 0 for all 4 Cassia species in which multiple accessions were studied. Assuming 1.0% divergence as the minimum requirement for discriminating 2 species, the 4 markers could only differentiate 15 to 65% of the species studied when used separately. Adding indels to the divergence increased the percentage of species discrimination by trnH-psbA to 90%. In 2-locus barcoding, while matK+rbcL (which is recommended by Consortium for the Barcoding of Life) discriminated 90% of the species, the other combinations of matK+ITS and rbcL+trnH-psbA showed 100% species discrimination. However, matK is plagued with primer issues. The combination of rbcL+trnH-psbA provided the most accurate (100% species ID) and efficient tiered DNA barcoding tool for the authentication of Cassia medicinal products.
The name Andrographis alata (Vahl) Nees, basionym Justicia alata Vahl, is epitypified here.
A systematic morphological study of Andrographis (Acanthaceae: Andrographinae) in India has revealed that the genus Haplanthus is distinct from Andrographis. We resurrect the genus Haplanthus here with four species, one of which contains three varieties. Five
We provide a checklist of Angiosperm alpha diversity of Sendirakillai Sacred Grove (SSG), a community conserved Tropical Dry Evergreen Forest (TDEF) fragment located on the Coromandel Coast of Cuddalore district (11°44’24” N, 79°47’24” E), Tamil Nadu, South India. Plant specimens were collected either with flowers or fruits and were identified and confirmed with available regional floras, revisions and monographs. In the present study, we have enumerated a total of 180 species and 2 varieties belonging to 151 genera distributed in 66 families from 29 orders according to Angiosperm Phylogeny Group III Classification. More than 30% of the total flora is represented by six families namely Fabaceae (14), Rubiaceae (12), Cyperaceae (10), Apocynaceae (8), Poaceae (8) and Euphorbiaceae (7). Three endemic species to India and three species that are confined to peninsular India and Sri Lanka are recorded from the sacred grove. Threats to the biodiversity of sacred grove are identified and conservation strategies are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.