The growth of a thin gold film on a conducting polymer surface from nucleation to formation of a continuous layer with a thickness of several nanometers is investigated in situ with grazing incidence small-angle X-ray scattering (GISAXS). Time resolution is achieved by performing the experiment in cycles of gold deposition on poly(N-vinylcarbazole) (PVK) and subsequently recording the GISAXS data. The 2D GISAXS patterns are simulated, and morphological parameters of the gold film on PVK such as the cluster size, shape, and correlation distance are extracted. For the quantitative description of the cluster size evolution, scaling laws are applied. The time evolution of the cluster morphology is explained with a growth model, suggesting a cluster growth proceeding in four steps, each dominated by a characteristic kinetic process: nucleation, lateral growth, coarsening, and vertical growth. A very limited amount of 6.5 wt % gold is observed to be incorporated inside a 1.2-nm-thick enrichment layer in the PVK film.
Nanostructured titania films are of growing interest due to their application in future photovoltaic technologies. Therefore, a lot of effort has been put into the controlled fabrication and tailoring of titania nanostructures. The controlled sol-gel synthesis of titania, in particular in combination with block copolymer templates, is very promising because of its high control on the nanostructure, easy application and cheap processing possibilities. This tutorial review gives a short overview of the structural control of titania films gained by using templated sol-gel chemistry and shows how this approach is extended by the addition of further functionality to the films. Different expansions of the sol-gel templating are possible by the fabrication of gradient samples, by the addition of a homopolymer, by the combination with micro-fluidics and also by the application of novel precursors for low-temperature processing. Moreover, hierarchically structured titania films can be fabricated via the subsequent application of several sol-gel steps or via the inclusion of colloidal templates in a one-step process. Integrated function in the block copolymer used in the sol-gel synthesis allows for the fabrication of an integrated blocking layer or an integrated hole-conductor. Both approaches grant a one-step fabrication of two components of a working solar cell, which make them very promising towards a cheap solar cell production route. Looking to the complete solar cell, the top contact is also of great importance as it influences the function of the whole solar cell. Thus, the mechanisms acting in the top contact formation are also reviewed. For all these aspects, characterization techniques that allow for a structural investigation of nanostructures inside the active layers are important. Therefore, the characterization techniques that are used in real space as well as in reciprocal space are explained shortly as well.
Thin thermoresponsive hydrogel films of poly(N-isopropylacrylamide) end-capped with nbutyltrithiocarbonate (nbc-PNIPAM) are prepared on solid supports having silicon oxide surfaces with spincoating. The film thickness is varied from 5 to 240 nm. As measured with optical microscopy, atomic force microscopy, and X-ray reflectivity, the films are homogeneous and smooth for films thicker than 5 nm. Microbeam grazing-incidence small-angle X-ray scattering (µGISAXS) shows that these nbc-PNIPAM films are physically cross-linked gels, where the end-group domains form the physical cross-links with a defined nearest-neighbor distance of 25 nm. Along the surface normal, with µGISAXS the presence of long-ranged correlations between substrate and film surface is detected. The thinner the nbc-PNIPAM films are, the stronger is the response to swelling in saturated water vapor atmosphere. A swelling up to a factor of 6.5 as compared to the dry film and a factor of 2.9 as compared to the collapsed film is found. The transition temperature in thin films shifts slightly as compared to the bulk, and the width of the transition is film thickness dependent. Measurements of the bulk solution behavior complete the investigation.
Hierarchically structured titania films for application in hybrid solar cells are prepared by combining microsphere templating and sol-gel chemistry with an amphiphilic diblock copolymer as a structure-directing agent. The films have a functional structure on three size scales: (1) on the micrometer scale a holelike structure for reduction of light reflection, (2) on an intermediate scale macropores for surface roughening and improved infiltration of a hole transport material, and (3) on a nanometer scale a mesoporous structure for charge generation. Poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide) (PDMS-b-MA(PEO)) is used as a structure-directing agent for the preparation of the mesopore structure, and poly(methyl methacrylate) (PMMA) microspheres act as a template for the micrometer-scale structure. The structure on all levels is modified by the method of polymer extraction as well as by the addition of PMMA particles to the sol-gel solution. Calcination results in structures with increased size and a higher degree of order than extraction with acetic acid. With addition of PMMA a microstructure is created and the size of the mesopores is reduced. Already moderate microstructuring results in a strong decrease in film reflectivity; a minimum reflectivity value of less than 0.1 is obtained by acetic acid treatment and subsequent calcination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.