Background: Microalgae are a promising new source for biomass production. One of the major challenges in regards to cost effectiveness is the biomass harvest. High energy input is required for the separation of the small algal cells from a large volume of surrounding media. Electroflocculation is reported as a promising harvesting technique to improve cost effectiveness within the downstream process. In the present study, six electrode materials were tested for electroflocculation of Scenedesmus acuminatus. Besides the commonly used aluminum and iron electrodes, magnesium, copper, zinc and brass electrodes were tested for biomass harvest and compared. The influence of four different voltages (10, 20, 30 and 40 V) was investigated and evaluated. Results:Electroflocculation was applicable with all tested electrode materials. The highest flocculation efficiency was achieved using magnesium electrodes followed by Al, Zn, Cu, Fe and brass. Using magnesium, 90% of the suspension was clarified at 40, 30, 20, and 10 V after 9.2, 12.5, 18.5, and 43 min, respectively. All electrode materials showed the fastest flocculation at 40 V and the lowest at 10 V. The pH increased from 7.5 to values between 9.3 and 11.9 during the flocculation processes. Reuse of the supernatant showed no adverse effect on algal growth. The highest cell counts after 12 days of incubation were achieved with iron at 1.86 × 10 7 cells ml −1 and the lowest with copper at 1.23 × 10 7 cells ml −1. Conclusion:Besides the commonly used iron and/or aluminum electrodes, other materials like magnesium, copper, zinc and brass can be successfully used for microalgal biomass harvest. For special biomass applications like food or feed additives, metals like magnesium have other advantages besides their high flocculation efficiency such as their low toxicity at high concentrations. Higher voltages increased the maximum flocculation efficiency but also increased the required energy input.
Abstract:The mid-term framework of global aviation is shaped by air travel demand growth rates of 2-5% p.a. and ambitious targets to reduce aviation-related CO 2 emissions by up to 50% until 2050. Alternative jet fuels such as bio-or electrofuels can be considered as a potential means towards low-emission aviation. While these fuels offer significant emission reduction potential, their market success depends on manifold influencing factors like the maturity of the production technology or the development of the price of conventional jet fuel. To study the potential for adoption of alternative jet fuels in aviation and the extent to which alternative fuels can contribute to the reduction targets, we deploy a System Dynamics approach. The results indicate that the adoption of alternative fuels and therefore their potential towards low-emissions aviation is rather limited in most scenarios considered since current production processes do not allow for competitive prices compared to conventional jet fuel. This calls for the development of new production processes that allow for economic feasibility of converting biomass or hydrogen into drop-in fuels as well as political measures to promote the adoption of alternative fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.