The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.
Software-product-line engineering has gained considerable momentum in the recent years, both in industry and in academia. A software product line is a family of software products that share a common set of features. Software product lines challenge traditional analysis techniques, such as type checking, model checking, and theorem proving, in their quest of ensuring correctness and reliability of software. Simply creating and analyzing all products of a product line is usually not feasible, due to the potentially exponential number of valid feature combinations. Recently, researchers began to develop analysis techniques that take the distinguishing properties of software product lines into account, for example, by checking feature-related code in isolation or by exploiting variability information during analysis. The emerging field of product-line analyses is both broad and diverse, so it is difficult for researchers and practitioners to understand their similarities and differences. We propose a classification of product-line analyses to enable systematic research and application. Based on our insights with classifying and comparing a corpus of 123 research articles, we develop a research agenda to guide future research on product-line analyses.
FeatureIDE is an open-source framework for feature-oriented software development (FOSD) based on Eclipse. FOSD is a paradigm for construction, customization, and synthesis of software systems. Code artifacts are mapped to features and a customized software system can be generated given a selection of features. The set of software systems that can be generated is called a software product line (SPL). FeatureIDE supports several FOSD implementation techniques such as feature-oriented programming, aspect-oriented programming, delta-oriented programming, and preprocessors. All phases of FOSD are supported in FeatureIDE, namely domain analysis, requirements analysis, domain implementation, and software generation.
Program comprehension is an important cognitive process that inherently eludes direct measurement. Thus, researchers are struggling with providing suitable programming languages, tools, or coding conventions to support developers in their everyday work. In this paper, we explore whether functional magnetic resonance imaging (fMRI), which is well established in cognitive neuroscience, is feasible to more directly measure program comprehension. In a controlled experiment, we observed 17 participants inside an fMRI scanner while they were comprehending short source-code snippets, which we contrasted with locating syntax errors. We found a clear, distinct activation pattern of five brain regions, which are related to working memory, attention, and language processing-all processes that fit well to our understanding of program comprehension. Our results encourage us and, hopefully, other researchers to use fMRI in future studies to measure program comprehension and, in the long run, answer questions, such as: Can we predict whether someone will be an excellent programmer? How effective are new languages and tools for program understanding? How should we train developers?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.