Program comprehension is an important cognitive process that inherently eludes direct measurement. Thus, researchers are struggling with providing suitable programming languages, tools, or coding conventions to support developers in their everyday work. In this paper, we explore whether functional magnetic resonance imaging (fMRI), which is well established in cognitive neuroscience, is feasible to more directly measure program comprehension. In a controlled experiment, we observed 17 participants inside an fMRI scanner while they were comprehending short source-code snippets, which we contrasted with locating syntax errors. We found a clear, distinct activation pattern of five brain regions, which are related to working memory, attention, and language processing-all processes that fit well to our understanding of program comprehension. Our results encourage us and, hopefully, other researchers to use fMRI in future studies to measure program comprehension and, in the long run, answer questions, such as: Can we predict whether someone will be an excellent programmer? How effective are new languages and tools for program understanding? How should we train developers?
Abstract-Effective software engineering demands a coordinated effort. Unfortunately, a comprehensive view on developer coordination is rarely available to support software-engineering decisions, despite the significant implications on software quality, software architecture, and developer productivity. We present a fine-grained, verifiable, and fully automated approach to capture a view on developer coordination, based on commit information and source-code structure, mined from version-control systems. We apply methodology from network analysis and machine learning to identify developer communities automatically. Compared to previous work, our approach is fine-grained, and identifies statistically significant communities using order-statistics and a community-verification technique based on graph conductance. To demonstrate the scalability and generality of our approach, we analyze ten open-source projects with complex and active histories, written in various programming languages. By surveying 53 open-source developers from the ten projects, we validate the authenticity of inferred community structure with respect to reality. Our results indicate that developers of open-source projects form statistically significant community structures and this particular view on collaboration largely coincides with developers' perceptions of real-world collaboration.
Abstract-Empirical methods have grown common in software engineering, but there is no consensus on how to apply them properly. Is practical relevance key? Do internally valid studies have any value? Should we replicate more to address the tradeoff between internal and external validity? We asked the community how empirical research should take place in software engineering, with a focus on the tradeoff between internal and external validity and replication, complemented with a literature review about the status of empirical research in software engineering. We found that the opinions differ considerably, and that there is no consensus in the community when to focus on internal or external validity and how to conduct and review replications.
Programming experience is an important confounding parameter in controlled experiments regarding program comprehension. In literature, ways to measure or control programming experience vary. Often, researchers neglect it or do not specify how they controlled for it. We set out to find a well-defined understanding of programming experience and a way to measure it. From published comprehension experiments, we extracted questions that assess programming experience. In a controlled experiment, we compare the answers of computer-science students to these questions with their performance in solving program-comprehension tasks. We found that self estimation seems to be a reliable way to measure programming experience. Furthermore, we applied exploratory and confirmatory factor analyses to extract and evaluate a model of programming experience. With our analysis, we initiate a path toward validly and reliably measuring and describing programming experience to better understand and control its influence in program-comprehension experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.