Dragonflies and damselflies are conspicuous insects – many are large and brightly coloured. Here for the first time is a comprehensive guide to the Australian dragonfly fauna. The book includes identification keys not only for adults but also for their larvae, commonly known as ‘mud eyes’ and often used as bait for freshwater fish. With stunning full-colour images and distribution maps, the book covers all 30 families, 110 genera and 324 species found in Australia. Dragonflies are valuable indicators of environmental well-being. A detailed knowledge of the dragonfly fauna and its changes is therefore an important basis for decisions about environmental protection and management. Their extraordinary diversity will interest entomologists and amateur naturalists alike.
Climate change is expected to have substantial impacts on the composition of freshwater communities, and many species are threatened by the loss of climatically suitable habitat. In this study we identify Australian Odonata (dragonflies and damselflies) vulnerable to the effects of climate change on the basis of exposure, sensitivity and pressure to disperse in the future. We used an ensemble of species distribution models to predict the distribution of 270 (85%) species of Australian Odonata, continent-wide at the subcatchment scale, and for both current and future climates using two emissions scenarios each for 2055 and 2085. Exposure was scored according to the departure of temperature, precipitation and hydrology from current conditions. Sensitivity accounted for change in the area and suitability of projected climatic habitat, and pressure to disperse combined measurements of average habitat shifts and the loss experienced with lower dispersal rates. Streams and rivers important to future conservation efforts were identified based on the sensitivity-weighted sum of habitat suitability for the most vulnerable species. The overall extent of suitable habitat declined for 56–69% of the species modelled by 2085 depending on emissions scenario. The proportion of species at risk across all components (exposure, sensitivity, pressure to disperse) varied between 7 and 17% from 2055 to 2085 and a further 3–17% of species were also projected to be at high risk due to declines that did not require range shifts. If dispersal to Tasmania was limited, many south-eastern species are at significantly increased risk. Conservation efforts will need to focus on creating and preserving freshwater refugia as part of a broader conservation strategy that improves connectivity and promotes adaptive range shifts. The significant predicted shifts in suitable habitat could potentially exceed the dispersal capacity of Odonata and highlights the challenge faced by other freshwater species.
Aim Freshwater ecosystems are highly vulnerable to the effects of climate change. Where long‐term datasets are available, shifts in species phenology, species distributions and community structure consistent with a climate change signal have already been observed. Identifying trends across the wider landscape, to guide management in response to this threat, is limited by the resolution of sampling. Standard biomonitoring of macroinvertebrates for water‐quality purposes is currently not well suited to the detection of climate change effects, and there are risks that substantial changes will occur before a management response can be made. This study investigated whether dragonflies, frequently recommended as general indicators of ecological health, are also suitable as indicators of climate change. Location Data were analysed from standard bio‐assessment monitoring at over 850 sites spanning a 9° latitudinal gradient in eastern Australia. Methods Using variation partitioning, we analysed the proportion of assemblage turnover in dragonflies and other macroinvertebrate assemblages that can be explained by climate and other environmental drivers. We also tested whether the utility of dragonflies as indicators improved at higher taxonomic resolution and whether the turnover of dragonfly assemblages was congruent with that of other groups. Results Climate explained three times as much variation in turnover of dragonfly species than dragonfly and other macroinvertebrate assemblages at family level. The dissimilarity of dragonflies and varying turnover in each macroinvertebrate assemblage meant surrogacy amongst groups were low. Main conclusions On the basis of the influence of climate on turnover of macroinvertebrate assemblages, dragonfly species distribution appears highly sensitive to climatic factors, making this taxon a potential useful indicator of climate change responses. However, the low surrogacy amongst assemblages also suggests that a shift in the focus of conservation management from specific taxa to the functional composition of assemblages across a diverse range of habitats is needed.
Aim To explore the phylogenetics and historical biogeography of the dragonfly family Petaluridae (known as 'petaltails'), a relict dragonfly group with unique habitat and life history attributes.Location Australia, New Zealand, Japan, Chile and North America.Methods Using five mitochondrial and three nuclear gene fragments we recovered garli-part maximum likelihood and Bayesian phylogenetic hypotheses for 10 of the 11 extant petaltail species. Biogeographical patterns were analysed using Lagrange and interpreted through beast relaxed clock dating analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.