The microbiome is essential for extraction of energy and nutrition from plant-based diets and may have facilitated primate adaptation to new dietary niches in response to rapid environmental shifts. Here we use 16S rRNA sequencing to characterize the microbiota of wild western lowland gorillas and sympatric central chimpanzees and demonstrate compositional divergence between the microbiotas of gorillas, chimpanzees, Old World monkeys, and modern humans. We show that gorilla and chimpanzee microbiomes fluctuate with seasonal rainfall patterns and frugivory. Metagenomic sequencing of gorilla microbiomes demonstrates distinctions in functional metabolic pathways, archaea, and dietary plants among enterotypes, suggesting that dietary seasonality dictates shifts in the microbiome and its capacity for microbial plant fiber digestion versus growth on mucus glycans. These data indicate that great ape microbiomes are malleable in response to dietary shifts, suggesting a role for microbiome plasticity in driving dietary flexibility, which may provide fundamental insights into the mechanisms by which diet has driven the evolution of human gut microbiomes.
Cells are known to take up molecules through membrane transport mechanisms such as active transport, channels, and facilitated transport. We report here a new membrane transport mechanism that employs neither cellular energy like active transport nor a preexisting electrochemical gradient of the free substrate like channels or facilitated transport. Through this mechanism, cells take up vitamin A bound with high affinity to retinol binding protein (RBP) in the blood. This mechanism is mediated by the RBP receptor STRA6, which defines a new type of cell-surface receptor. STRA6 is essential for the proper functioning of multiple human organs, but the mechanisms that enable and control its cellular vitamin A uptake activity are unknown. We found that STRA6-mediated vitamin A uptake is tightly coupled to specific intracellular retinoid storage proteins, but no single intracellular protein is absolutely required for its transport activity. By developing sensitive real-time monitoring techniques, we found that STRA6 is not only a membrane receptor but also catalyzes vitamin A release from RBP. However, vitamin A released from RBP by STRA6 inhibits further vitamin A release by STRA6 unless specific intracellular retinoid storage proteins relieve this inhibition. This mechanism is responsible for its coupling to intracellular storage proteins. The coupling of uptake to storage provides high specificity in cellular uptake of vitamin A and prevents the excessive accumulation of free vitamin A. We have also identified a robust small molecule-based technique to specifically stimulate cellular vitamin A uptake. This technique has implications in treating human diseases.
Early onset of puberty may confer adverse health consequences. Thus, modifiable factors influencing the timing of puberty are of public health interest. Childhood overweight as a factor in the earlier onset of menarche has been supported by prospective evidence; nonetheless, its overall contribution may have been overemphasized, since secular trends toward a younger age at menarche have not been a universal finding during the recent obesity epidemic. Current observational studies suggest notable associations between dietary intakes and pubertal timing beyond contributions to an energy imbalance: children with the highest intakes of vegetable protein or animal protein experience pubertal onset up to 7 months later or 7 months earlier, respectively. Furthermore, girls with high isoflavone intakes may experience the onset of breast development and peak height velocity approximately 7-8 months later. These effect sizes are on the order of those observed for potentially neuroactive steroid hormones. Thus, dietary patterns characterized by higher intakes of vegetable protein and isoflavones and lower intakes of animal protein may contribute to a lower risk of breast cancer or a lower total mortality.
Background Even before the onset of age-related diseases, obesity might be a contributing factor to the cumulative burden of oxidative stress and chronic inflammation throughout the life course. Obesity may therefore contribute to accelerated shortening of telomeres. Consequently, obese persons are more likely to have shorter telomeres, but the association between body mass index (BMI) and leukocyte telomere length (TL) might differ across the life span and between ethnicities and sexes. Objective A collaborative cross-sectional meta-analysis of observational studies was conducted to investigate the associations between BMI and TL across the life span. Design Eighty-seven distinct study samples were included in the meta-analysis capturing data from 146,114 individuals. Study-specific age- and sex-adjusted regression coefficients were combined by using a random-effects model in which absolute [base pairs (bp)] and relative telomere to single-copy gene ratio (T/S ratio) TLs were regressed against BMI. Stratified analysis was performed by 3 age categories (“young”: 18–60 y; “middle”: 61–75 y; and “old”: >75 y), sex, and ethnicity. Results Each unit increase in BMI corresponded to a −3.99 bp (95% CI: −5.17, −2.81 bp) difference in TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a −7.67 bp (95% CI: −10.03, −5.31 bp) difference. Each unit increase in BMI corresponded to a −1.58 × 10−3 unit T/S ratio (0.16% decrease; 95% CI: −2.14 × 10−3, −1.01 × 10−3) difference in age- and sex-adjusted relative TL in the total pooled sample; among young adults, each unit increase in BMI corresponded to a −2.58 × 10−3 unit T/S ratio (0.26% decrease; 95% CI: −3.92 × 10−3, −1.25 × 10−3). The associations were predominantly for the white pooled population. No sex differences were observed. Conclusions A higher BMI is associated with shorter telomeres, especially in younger individuals. The presently observed difference is not negligible. Meta-analyses of longitudinal studies evaluating change in body weight alongside change in TL are warranted.
Girls, but not boys, with higher prepubertal isoflavone intakes appear to enter puberty at a later age. Fiber intake in this sample of healthy white girls and boys was not relevant for puberty timing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.