Tetrazoles represent a class of five-membered heterocyclic compounds with polynitrogen electron-rich planar structural features. This special structure makes tetrazole derivatives useful drugs, explosives, and other functional materials with a wide range of applications in many fields of medicine, agriculture, material science, etc. Based on our research works on azoles and other references in recent years, this review covers reported work on the synthesis and biological activities of tetrazole derivatives.
Although large numbers of microRNAs (miRNAs) expressed in Alzheimer disease (AD) have been detected, their functions and mechanisms of regulation remain to be fully clarified. Beta-site Amyloid precursor protein Cleaving Enzyme 1 (BACE1) has been one of the prime therapeutic targets for AD. Here, we identified that miR-124 levels are gradually decreased in AD. In addition, we demonstrated that miR-124 suppresses BACE1 expression by directly targeting the 3′UTR of Bace1 mRNA in vitro. Inhibition of miR-124 significantly increased BACE1 levels in neuronal cells. In contrast, miR-124 overexpression significantly suppressed BACE1 expression in cells. And finally we determined that downregulation of miR-124 alleviated Aβ-induced viability inhibition and decreased apoptosis in SH-SY5Y cells. Our results demonstrated that miR-124 is a potent negative regulator of BACE1 in the cellular AD phenotype and might be involved in the pathogenesis of AD.
Background/Aims: Temporal lobe epilepsy (TLE) is the most common form of adult localization-related epilepsy that is accompanied by progressive etiopathology and high incidences of drug resistance. Circular RNAs (circRNAs) play important roles in fine-tuning gene expression, however, the expression profile and clinical significance of circRNAs in TLE remains unknown. Methods: Circular RNA microarray was conducted to identify TLE-related circRNAs. CCK8 assays and flow cytometric assays were conducted to clarify the role of circRNA in TLE in vitro. Bioinformatics analysis and in vitro experiments were conducted to clarify the mechanism of circRNA-mediated gene regulation in TLE cell. Results: 586 differentially expressed circRNAs were identified between TLE and the control tissues. The expression of circRNA-0067835 was significantly down-regulated in tissues and plasma from TLE patients. Lower circRNA-0067835 correlated to increased seizure frequency, HS, and higher Engel’s score. Overexpression of circRNA-0067835 observably decreased SH-SY5Y cell proliferation by causing G1 arrest and promoting apoptosis. Bioinformatics online programs predicted that circRNA-0067835 acted as miR-155 sponge to regulate FOXO3a expression, which was validated using luciferase reporter assay. Conclusion: Our experiments showed that circRNA-0067835 regulated refractory epilepsy progression by acting as a sponge of miR-155 to promote FOXO3a expression, indicating that circRNA-0067835 may serve as a potential therapeutic target for patients with TLE.
Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancer-associated death in women worldwide. microRNAs (miRNAs) play critical roles in the cellular processes of breast cancer. However, the crucial roles and underlying mechanisms of miR-539 in breast cancer remain unclear. By RT-qPCR, we found that expression of miR-539 was markedly down-regulated in breast cancer tissues and cell lines compared with that in paired adjacent normal tissues and normal cell lines. The low level of miR-539 expression was positively associated with lymph node metastasis. Furthermore, forced expression of miR-539 inhibited proliferation and migration of breast cancer MDA-MB-231 and MCF7 cells in vitro and suppressed tumor growth in vivo. Moreover, bioinformatics analysis and luciferase reporter assays indicated that epidermal growth factor receptor (EGFR) was a direct target of miR-539. Over-expression of miR-539 decreased the EGFR mRNA and protein levels in MDA-MB-231 and MCF7 cells. In addition, ectopic over-expression of EGFR partly reversed miR-539-inhibited proliferation as well as migration of MDA-MB-231 and MCF7 cells. Taken together, our results demonstrate that miR-539 functions as a tumor suppressor in breast cancer by downregulating EGFR, supporting the targeting of the novel miR-539/EGFR axis as a potentially effective therapeutic approach for breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.