Cervical cancer, which is significantly associated with high-risk human papillomavirus (HPV) infection, currently ranks the fourth most common cancer among women worldwide. Previous literature reported that the elevated expression of G6PD was significantly correlated with the occurrence and deterioration of human cervical cancer, especially with the cervical cancer with HPV16 and HPV18 infection. In this study, we verified that G6PD expression has a strong positive correlation with HPV16 E6 levels in cervical cancer tissues and cells. In addition, regulating the expression of HPV16 E6 significantly affected the proliferation, apoptosis, migration, and invasion in the cervical cancer HeLa cells, as well as the transcript and protein levels of G6PD. The luciferase reporter assay and ChIP assay proved that HPV16 E6 stimulated the transcription of G6PD mRNA and subsequently enhanced the expression of G6PD through directly binding to the specific sites in the promoter of G6PD. Our findings reveal that HPV16 E6 is a novel regulatory factor of G6PD. Furthermore, by regulating the expression of G6PD, HPV16 E6 might promote the proliferation and migration potential, and inhibit apoptosis of cervical cancer cells, which ultimately contributed to the progression and metastasis of cervical cancer.
Voltage-gated sodium channel beta 2 (Nav2.2 or Navβ2, coded by SCN2B mRNA), a gene involved in maintaining normal physiological functions of the prefrontal cortex and hippocampus, might be associated with prefrontal cortex aging and memory decline. This study investigated the effects of Navβ2 in amyloid-β 1-42- (Aβ1-42-) induced neural injury model and the potential underlying molecular mechanism. The results showed that Navβ2 knockdown restored neuronal viability of Aβ1-42-induced injury in neurons; increased the contents of brain-derived neurotrophic factor (BDNF), enzyme neprilysin (NEP) protein, and NEP enzyme activity; and effectively altered the proportions of the amyloid precursor protein (APP) metabolites including Aβ42, sAPPα, and sAPPβ, thus ameliorating cognitive dysfunction. This may be achieved through regulating NEP transcription and APP metabolism, accelerating Aβ degradation, alleviating neuronal impairment, and regulating BDNF-related signal pathways to repair neuronal synaptic efficiency. This study provides novel evidence indicating that Navβ2 plays crucial roles in the repair of neuronal injury induced by Aβ1-42 both in vivo and in vitro.
Background: Alzheimer’s disease (AD), a neurodegenerative disease showing multiple complex pathomechanism alterations, has affected the normal life of many old people. It is urgent to find an effective medicine for AD. Ginsenoside Rb1 (Rb1) is the main component of panax notoginseng saponins, a famous Chinese herbal medicine, and is expected to be a useful drug in the treatment of AD. This study mainly explored the potential effects of Rb1 in model of AD in vivo and in vitro, and investigated the possible mechanisms. Materials and methods: We studied the neuroprotective effect of Rb1 in transgenic mouse animal model and cell AD model in vitro. The cognitive function of APP/PS1 mice was measured in Morris water maze and Novel Object Recognition. Electrophysiological patch clamp recording and electrophysiology were used to nerve excitability. Further, the expression of proteins of Nav1.2 and Nav1.6 were used by Western blot. Results: We found that Rb1 treatment significantly improved the cognitive and memory loss, and reversed the hyperexcitability by altering the expressions of Nav1.2 and Nav1.6 of APP/PS1 mice. Further, Rb1 improved the hyperexcitability induced by Aβ1-42-injured neurons, which might be associated with alteration of the expressions of Nav1.2 and Nav1.6. As we expect, Rb1 attenuated Aβ1-42-induced injury in primary neurons. Conclusion: Our data showed that Rb1 played a critical role in improvement of the cognitive deficit and abnormal excitability of AD by regulating Nav1.2 and Nav1.6 expressions. Thus, Rb1 shows protective effects on AD models and may be a potential candidate for AD treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.