Summary The productivity of species‐diverse plant assemblages strongly depends on the temporal dynamics of nutrient uptake by competing neighbouring plants. Our understanding, however, of how rates of nitrogen (N), phosphorous (P) and potassium (K) uptake might change through time between neighbouring plant species under field conditions is still very limited. Here, we specifically measure the temporal trajectories of N, P and K uptake by staple food plants such as wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) when growing either in monocultures or in intercropping systems. We ask how (i) plant species combinations, (ii) N fertilization and (iii) film mulching might affect key indexes of N, P and K uptake over time. We fit logistic models to characterize the nutrient uptake trajectories. Maximum cumulative N, P and K uptake (kg ha−1) by wheat and barley were significantly greater in wheat–maize or barley–maize intercropping systems than in wheat or barley monocultures. Cumulative nutrient uptake by intercropped maize (either with wheat or with barley) was reduced by interspecific competition at early growth stages, but it increased rapidly after wheat and barley were harvested. Maximum cumulative N and P (but not K) uptake by intercropped maize were significantly higher than the uptake by monoculture maize, particularly when N fertilizer or film mulching was applied. Intercropping induced a significant temporal niche differentiation in maximum daily nutrient uptake rates (kg ha−1 day−1) between intercropped species. Fertilization had much stronger effects on maximum cumulative nutrient uptake of maize than that of wheat and barley. Mulching significantly increased the maximum cumulative nutrient uptake of maize and advanced the time to reach its maximum daily P and K uptake rates. Our study provides evidence of an important temporal niche differentiation mechanism (‘temporal complementarity’) in nutrient uptake rates between neighbouring plant species. A better understanding of temporal trajectories of interspecific nutrient uptake rates remains crucial if we want to maximize the nutrient‐use efficiency and sustain overyielding (i.e. high food production) in plant species‐diverse systems such as intercropping.
Background and Aims Competition between intercropped species is important for yield advantage, but little attention has been given to interspecific competitive dynamics in intercropping. Methods A field experiment with five cropping systems (wheat/maize, barley/maize intercropping, wheat, maize and barley sole cropping), two N levels (0 and 225 kg N ha −1 ) and two maize mulching treatments (with and without) were performed. Sequential harvest of subplots was performed between 7 and 10 times, and the data were fitted to a logistic growth model. ResultsIntercropping significantly increased the maximum biomass and maximum growth rates of wheat and barley, but suppressed the early and maximum growth rate of intercropped maize. Maize growth recovered after the wheat or barley was harvested. In the presence of film mulch and/or fertilization, maximum biomass of intercropped maize was close to or significantly higher than that of maize alone. Fertilization and film mulching had much stronger effects on growth of maize than on wheat and barley. Conclusions Interspecific competitive dynamics regulated by fertilization and film mulching can be quantified by the logistic model, which is helpful to understand the yield advantage of intercropping. This has important implications for managing interspecific competition through agronomic practices at field.
The most important etiologic agent in the pathogenesis of cervical cancers (CCs) is human papillomavirus (HPV), while the mechanisms underlying are still not well known. Glucose-6-phosphate dehydrogenase (G6PD) is reported to elevate in various tumor cells. However, no available references elucidated the correlation between the levels of G6PD and HPV-infected CC until now. In the present study, we explored the possible role of G6PD in the pathology of CC induced by HPV infection. Totally 48 patients with HPV + CC and another 63 healthy women enrolled in the clinical were employed in the present study. Overall, prevalence of cervical infection with high-risk-HPV (HR-HPV) type examined was HPV-16, followed by HPV-18. The expressions of G6PD in CC samples were also detected by immunohistochemistry (IHC), qRT-PCR, and Western blot. Regression analysis showed elevated G6PD level was positively correlated with the CC development in 30-40 aged patients with HR-HPV-16/18 infection. The HPV16 + Siha, HPV18 + Hela, and HPV-C33A cell lines were employed and transfected with G6PD deficient vectors developed in vitro. MTT and flow cytometry were also employed to determine the survival and apoptosis of CC cells after G6PD expressional inhibition. Our data revealed that G6PD down-regulation induced poor proliferation and more apoptosis of HPV18 + Hela cells, when compared with that of HPV16 + Siha and HPV-C33A cells. These findings suggest that G6PD expressions in the HR-HPV + human CC tissues and cell lines play an important role in tumor growth and proliferation.
Ectopic glucose-6-phosphate dehydrogenase (G6PD) expression may contribute to tumorigenesis in cervical cancer associated with high-risk human papillomavirus (HR-HPV 16 and 18) infections. Here, we demonstrate that microRNA-1 (miR-1) in association with AGO proteins targets G6PD in HR-HPV-infected human cervical cancer cells. miR-1 inhibited expression of a reporter construct containing a putative G6PD 3′-UTR seed region and suppressed endogenous G6PD expression. Down-regulation of miR-1 increased G6PD expression in cervical cancer cells. Regression analysis revealed that miR-1 levels correlate negatively with the clinicopathologic features in HR-HPV 16/18-infected cervical cancer patients. miR-1 overexpression inhibited proliferation and promoted apoptosis in cervical cancer cells and reduced xenograft tumor growth in nude mice. Conversely, sponge-mediated miR-1 knockdown markedly increased viability and reduced apoptosis in cervical cancer cells and supported neoplasm growth. Restoration of G6PD expression partially reversed the effects of miR-1 overexpression both in vitro and in vivo. In addition, co-transfection of G6PD siRNA and miR-1 sponge partially reversed miR-1 sponge-induced reductions in cell viability and neoplasm growth. These results suggest that miR-1 suppresses the development and progression of HR-HPV 16/18-infected cervical cancer by targeting G6PD and may be a promising novel therapeutic candidate.
Recent evidences revealed that the alteration of microRNAs (miRNAs) might be associated with neuroplasticity induced by voluntary running wheel (RW) exercise in mice suffered from traumatic brain injury (TBI). In the present study, we explored the possible role of miR21 involved in the cognitive improvement following voluntary RW in TBI mice. Firstly, in situ hybridization and quantitative real-time PCR (qRT-PCR) were employed to determine the hippocampal expression and location of miR21 in TBI mice with or without spontaneous RW. Either miR21-mimics/plenti-miR21 or miR21-agomir/miR21-sponge was employed to regulate the miR21 expression in vivo and in vitro. Acquisition of spatial learning and memory retention was assessed by Morris Water Maze (MWM) test. Golgi stain was also performed to evaluate the alteration of hippocampal dendrite. Our finding confirmed that the elevated miR21 level in hippocampal post-TBI was significantly reduced by spontaneous RW. Overexpression of miR21 in TBI mice with spontaneous RW induced deteriorations in spatial learning and memory retention by significant decreases in the somata size and branch points of the hippocampus neurons. In vitro transduction with miR21 also reduced the neurite extension and the area of cultured hippocampal neuron. However, miR21 down-regulation reversed these effects. The present data strongly suggest that miR21 is an important molecule that has been involved in neuroprotection induced by voluntary RW exercise post-TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.