The most important etiologic agent in the pathogenesis of cervical cancers (CCs) is human papillomavirus (HPV), while the mechanisms underlying are still not well known. Glucose-6-phosphate dehydrogenase (G6PD) is reported to elevate in various tumor cells. However, no available references elucidated the correlation between the levels of G6PD and HPV-infected CC until now. In the present study, we explored the possible role of G6PD in the pathology of CC induced by HPV infection. Totally 48 patients with HPV + CC and another 63 healthy women enrolled in the clinical were employed in the present study. Overall, prevalence of cervical infection with high-risk-HPV (HR-HPV) type examined was HPV-16, followed by HPV-18. The expressions of G6PD in CC samples were also detected by immunohistochemistry (IHC), qRT-PCR, and Western blot. Regression analysis showed elevated G6PD level was positively correlated with the CC development in 30-40 aged patients with HR-HPV-16/18 infection. The HPV16 + Siha, HPV18 + Hela, and HPV-C33A cell lines were employed and transfected with G6PD deficient vectors developed in vitro. MTT and flow cytometry were also employed to determine the survival and apoptosis of CC cells after G6PD expressional inhibition. Our data revealed that G6PD down-regulation induced poor proliferation and more apoptosis of HPV18 + Hela cells, when compared with that of HPV16 + Siha and HPV-C33A cells. These findings suggest that G6PD expressions in the HR-HPV + human CC tissues and cell lines play an important role in tumor growth and proliferation.
Recent evidences revealed that the alteration of microRNAs (miRNAs) might be associated with neuroplasticity induced by voluntary running wheel (RW) exercise in mice suffered from traumatic brain injury (TBI). In the present study, we explored the possible role of miR21 involved in the cognitive improvement following voluntary RW in TBI mice. Firstly, in situ hybridization and quantitative real-time PCR (qRT-PCR) were employed to determine the hippocampal expression and location of miR21 in TBI mice with or without spontaneous RW. Either miR21-mimics/plenti-miR21 or miR21-agomir/miR21-sponge was employed to regulate the miR21 expression in vivo and in vitro. Acquisition of spatial learning and memory retention was assessed by Morris Water Maze (MWM) test. Golgi stain was also performed to evaluate the alteration of hippocampal dendrite. Our finding confirmed that the elevated miR21 level in hippocampal post-TBI was significantly reduced by spontaneous RW. Overexpression of miR21 in TBI mice with spontaneous RW induced deteriorations in spatial learning and memory retention by significant decreases in the somata size and branch points of the hippocampus neurons. In vitro transduction with miR21 also reduced the neurite extension and the area of cultured hippocampal neuron. However, miR21 down-regulation reversed these effects. The present data strongly suggest that miR21 is an important molecule that has been involved in neuroprotection induced by voluntary RW exercise post-TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.