The mechanisms contributing to airway wall remodeling in asthma are under investigation to identify appropriate therapeutic targets. Bronchial myofibroblasts would represent an important target because they play a crucial role in the genesis of subepithelial fibrosis, a characteristic feature of the remodeling process, but their origin is poorly understood. We hypothesized that they originate from fibrocytes, circulating cells with the unique characteristic of expressing the hemopoietic stem cell Ag CD34 and collagen I. In this study we show that allergen exposure induces the accumulation of fibrocyte-like cells in the bronchial mucosa of patients with allergic asthma. These cells are CD34-positive; express collagen I and α-smooth muscle actin, a marker of myofibroblasts; and localize to areas of collagen deposition below the epithelium. By tracking labeled circulating fibrocytes in a mouse model of allergic asthma, we provide evidence that fibrocytes are indeed recruited into the bronchial tissue following allergen exposure and differentiate into myofibroblasts. We also show that human circulating fibrocytes acquire the myofibroblast phenotype under in vitro stimulation with fibrogenic cytokines that are produced in exaggerated quantities in asthmatic airways. These results indicate that circulating fibrocytes may function as myofibroblast precursors and may contribute to the genesis of subepithelial fibrosis in asthma.
The respiratory epithelium represents the first barrier encountered by airborne Ags. Two major dust mite Ags, Der p3 and Der p9, are serine proteases that may activate lung epithelial cells by interaction with the protease-activated receptor 2 (PAR-2). In this study both Der p3 and Der p9 cleaved the peptide corresponding to the N terminus of PAR-2 at the activation site. Both Ags sequentially stimulated phosphoinositide hydrolysis, transient cytosolic Ca2+ mobilization, and release of GM-CSF and eotaxin in human pulmonary epithelial cells. These responses were similar to those observed with trypsin and a specific PAR-2 agonist and were related to the serine protease activity of Der p3 and Der p9. Cell exposure to the Ags resulted in a refractory period, indicating that a PAR had been cleaved. Partial desensitization to Der p3 and Der p9 by the PAR-2 agonist suggested that PAR-2 was one target of the Ags. However, PAR-2 was not the only target, because the PAR-2 agonist caused less desensitization to Der p3 and Der p9 than did trypsin. A phospholipase C inhibitor prevented the cytokine-releasing effect of the PAR-2 agonist and abolished or reduced (>70%) the cytokine-releasing effects of Der p3 and Der p9. Our results suggest that Der p 3 and Der p9 may induce a nonallergic inflammatory response in the airways through the release of proinflammatory cytokines from the bronchial epithelium and that this effect is at least in part mediated by PAR-2.
We investigated the kinetics of allergen-induced eotaxin expression and its relationship to eosinophil accumulation and activation in the airways of patients with allergic asthma. Twenty-four patients with allergic asthma and late asthmatic responses to allergen inhalation were randomly allocated into three groups of eight patients each, who received bronchoscopy with bronchial biopsies and BAL at 2, 4 and 24 h, respectively, after the inhalation of the diluent and the allergen. The expression of eotaxin mRNA and protein and eotaxin release were evaluated by in situ hybridization, immunohistochemistry, immunocytochemistry, and radioimmunoassay. Increased transcription from the eotaxin gene preceded the appearance of the late asthmatic response and the influx of activated eosinophils in bronchial tissue and BAL fluid (BALF). This was followed by increased cell expression of eotaxin protein (P<0.001) and increased eotaxin release (P<0.001), which correlated with the numbers of total and activated eosinophils and the level of airflow obstruction at 4 h after allergen exposure (P<0.05 for all correlations). At 24 h after allergen inhalation, enhanced eotaxin expression declined without a similar reduction in the numbers of eosinophils in bronchial biopsies and when there was a further increase in the number of these cells in BALF (P<0.05). These results indicate that eotaxin contributes to the early phase of allergen-induced recruitment of activated eosinophils into the airways of patients with allergic asthma and that other factors are implicated in the persistence of eosinophil infiltration.
Acute lung injury (ALI) is associated with high mortality and uncontrolled inflammation plays a critical role in ALI. TREM-1 is an amplifier of inflammatory response, and is involved in the pathogenesis of many infectious diseases. NLRP3 inflammasome is a member of NLRs family that contributes to ALI. However, the effect of TREM-1 on NLRP3 inflammasome and ALI is still unknown. This study aimed to determine the effect of TREM-1 modulation on LPS-induced ALI and activation of the NLRP3 inflammasome. We showed that LR12, a TREM-1 antagonist peptide, significantly improved survival of mice after lethal doses of LPS. LR12 also attenuated inflammation and lung tissue damage by reducing histopathologic changes, infiltration of the macrophage and neutrophil into the lung, and production of the pro-inflammatory cytokine, and oxidative stress. LR12 decreased expression of the NLRP3, pro-caspase-1 and pro-IL-1β, and inhibited priming of the NLRP3 inflammasome by inhibiting NF-κB. LR12 also reduced the expression of NLRP3 and caspase-1 p10 protein, and secretion of the IL-1β, inhibited activation of the NLRP3 inflammasome by decreasing ROS. For the first time, these data show that TREM-1 aggravates inflammation in ALI by activating NLRP3 inflammasome, and blocking TREM-1 may be a potential therapeutic approach for ALI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.