The novel coronavirus pneumonia triggered by COVID-19 is now raging the whole world. As a rapid and reliable killing COVID-19 method in industry, electron beam irradiation can interact with virus molecules and destroy their activity. With the unexpected appearance and quickly spreading of the virus, it is urgently necessary to figure out the mechanism of electron beam irradiation on COVID-19. In this study, we establish a virus structure and molecule model based on the detected gene sequence of Wuhan patient, and calculate irradiated electron interaction with virus atoms via a Monte Carlo simulation that track each elastic and inelastic collision of all electrons. The characteristics of irradiation damage on COVID-19, atoms’ ionizations and electron energy losses are calculated and analyzed with regions. We simulate the different situations of incident electron energy for evaluating the influence of incident energy on virus damage. It is found that under the major protecting of an envelope protein layer, the inner RNA suffers the minimal damage. The damage for a ∼100-nm-diameter virus molecule is not always enhanced by irradiation energy monotonicity, for COVID-19, the irradiation electron energy of the strongest energy loss damage is 2 keV.
With the development of industrial civilization, advanced manufacturing technology has attracted widespread concern, including in the aerospace industry. In this paper, we report the applications of ultra-thin atomic layer deposition nanofilm in the advanced aerospace manufacturing industry, including aluminum anti-oxidation and secondary electron suppression, which are critical in high-power and miniaturization development. The compact and uniform aluminum oxide film, which is formed by thermal atomic layer deposition (ALD), can prevent the deep surface oxidation of aluminum during storage, avoiding the waste of material and energy in repetitive production. The total secondary electron yield of the C/TiN component nanofilm, deposited through plasma-enhanced atomic layer deposition, decreases 25% compared with an uncoated surface. The suppression of secondary electron emission is of great importance in solving the multipactor for high-power microwave components in space. Moreover, the controllable, ultra-thin uniform composite nanofilm can be deposited directly on the complex surface of devices without any transfer process, which is critical for many different applications. The ALD nanofilm shows potential for promoting system performance and resource consumption in the advanced aerospace manufacturing industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.