This review examines the current status (from 2016 to December 2018) of the electroanalytical application of boron-doped diamond (BDD), in view of its advantages and challenges for electroanalytical applications.
The rising atmospheric CO2 concentration (Ca) has increased tree growth and intrinsic water-use efficiency (iWUE). However, the magnitude of this effect on long-term iWUE and whether this increase could stimulate the growth of riparian forests in extremely arid regions remain poorly understood. We investigated the relationship between growth [ring width; basal area increment (BAI)] and iWUE in a riparian Populus euphratica Oliv. forest to test whether growth was enhanced by increasing CO2 and whether this compensated for environmental stresses in the lower reaches of the inland Heihe River, northwestern China. We accomplished this using dendrochronological methods and carbon (δ(13)C) and oxygen (δ(18)O) isotopic analysis. We found an increase in BAI before 1958, followed by a decrease from 1958 to 1977 and an increase to a peak around 2000. Tree-ring carbon discrimination (Δ) and δ(18)O indicated significant negative overall trends from 1920 to 2012. However, the relationship shifted in strength and direction around 1977 from significantly negative to a weak connection. The seasonal minimum temperature in April to July showed strong influence on Δ, and δ(18)O was controlled by relative humidity (negatively correlated) and temperature (positively correlated) in June and July. The patterns of internal to atmospheric CO2 (Ci/Ca) suggest a specific adaptation of tree physiology to increasing CO2. Intrinsic water-use efficiency increased significantly (by 36.4%) during the study period. The increased iWUE explained 19.8 and 39.1% of the observed yearly and high-frequency (first-order difference) variations in BAI, respectively, after 1977. Our results suggest significant CO2 stimulation of riparian tree growth, which compensated for the negative influences of reductions in river streamflow and a drying climate during the study period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.