In de novo pyrimidine biosynthesis, orotate phosphoribosyltransferase catalyzes the formation of orotidine 5'-monophosphate (OMP) from orotic acid and alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP). The known three-dimensional structure of the dimeric enzyme from Salmonella typhimurium is similar to that of other Type I phosphoribosyltransferases (nucleotide synthases) with a solvent-exposed active site atop a Rossman-type nucleotide binding fold. The three-dimensional structure of an enzyme-inhibitor complex [Henriksen et al. (1996) Biochemistry 35, 3803-3809] indicates that one of the two identical solvent-exposed loops can descend to cover the active site of the adjacent subunit of the dimeric enzyme. Catalytically essential residues are known to reside on this loop. In the present work, sensitivity toward limited proteolysis by trypsin confirms that the loop is solvent-exposed. Protection by PRPP and, to a lesser extent, by OMP demonstrates the existence of a second, trypsin-inaccessible, loop position. Two-dimensional 1H-15N NMR relaxation experiments on [alpha-15N]histidine-labeled WT OPRTase yielded backbone 15N T1 and T2 relaxation times and 15N[1H] NOE for His-105 (a loop residue) that are characteristic of small peptides. These results document that the surface loop is highly flexible in the unliganded enzyme. Addition of a hydrolytically stable PRPP analogue to the enzyme resulted in a significant reduction of His-105 peak intensity, indicating a dramatic change in the dynamic properties of the loop backbone in the analogue-ligated enzyme. 1H NMR titrations on histidine C2 protons, coupled with 1H and 31P titrations monitoring the C1H and 5-phosphate PRPP resonances, allowed the quantitation of the rates of loop movement during product release, and relate protein motion to enzymatic catalysis. These results suggest that loop opening and PRPP release is a two-step process, whose overall rate is partially rate-limiting in the reverse pyrophosphorolysis reaction.
The rising atmospheric CO2 concentration (Ca) has increased tree growth and intrinsic water-use efficiency (iWUE). However, the magnitude of this effect on long-term iWUE and whether this increase could stimulate the growth of riparian forests in extremely arid regions remain poorly understood. We investigated the relationship between growth [ring width; basal area increment (BAI)] and iWUE in a riparian Populus euphratica Oliv. forest to test whether growth was enhanced by increasing CO2 and whether this compensated for environmental stresses in the lower reaches of the inland Heihe River, northwestern China. We accomplished this using dendrochronological methods and carbon (δ(13)C) and oxygen (δ(18)O) isotopic analysis. We found an increase in BAI before 1958, followed by a decrease from 1958 to 1977 and an increase to a peak around 2000. Tree-ring carbon discrimination (Δ) and δ(18)O indicated significant negative overall trends from 1920 to 2012. However, the relationship shifted in strength and direction around 1977 from significantly negative to a weak connection. The seasonal minimum temperature in April to July showed strong influence on Δ, and δ(18)O was controlled by relative humidity (negatively correlated) and temperature (positively correlated) in June and July. The patterns of internal to atmospheric CO2 (Ci/Ca) suggest a specific adaptation of tree physiology to increasing CO2. Intrinsic water-use efficiency increased significantly (by 36.4%) during the study period. The increased iWUE explained 19.8 and 39.1% of the observed yearly and high-frequency (first-order difference) variations in BAI, respectively, after 1977. Our results suggest significant CO2 stimulation of riparian tree growth, which compensated for the negative influences of reductions in river streamflow and a drying climate during the study period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.