The alkaline-earth elements (Be, Mg, Ca, Sr, and Ba) strongly favor the formation of diamagnetic compounds in the +2 oxidation state. Herein we report a paramagnetic beryllium radical cation, [(CAAC) 2 Be] +• (2) [CAAC = cyclic (alkyl)(amino)carbene], prepared by oxidation of a zero-valent beryllium complex with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). Compound 2 was characterized by EPR spectroscopy, elemental analysis, X-ray crystallography, and DFT calculations. Notably, the isolation of 2 represents the first s-block charged radical and the first crystalline beryllium radical.
The long‐sought carbene–bismuthinidene, (CAAC)Bi(Ph), has been synthesized. Notably, this represents both the first example of a carbene‐stabilized subvalent bismuth complex and the extension of the carbene‐pnictinidene concept to a non‐toxic metallic element (Bi). The bonding has been investigated by single‐crystal X‐ray diffraction studies and DFT calculations. This report also highlights the hitherto unknown reducing and ligand transfer capability of a beryllium(0) complex.
We report a combined experimental and theoretical study on the first examples of carbodicarbene (CDC)‐stabilized bismuth complexes, which feature low‐coordinate cationic bismuth centers with C=Bi multiple‐bond character. Monocations [(CDC)Bi(Ph)Cl][SbF6] (8) and [(CDC)BiBr2(THF)2][SbF6] (11), dications [(CDC)Bi(Ph)][SbF6]2 (9) and [(CDC)BiBr(THF)3][NTf2]2 (12), and trication [(CDC)2Bi][NTf2]3 (13) have been synthesized via sequential halide abstractions from (CDC)Bi(Ph)Cl2 (7) and (CDC)BiBr3 (10). Notably, the dications and trication exhibit C⇉
Bi double dative bonds and thus represent unprecedented bismaalkene cations. The synthesis of these species highlights a unique non‐reductive route to C−Bi π‐bonding character. The CDC‐[Bi] complexes (7–13) were compared with related NHC‐[Bi] complexes (1, 3–6) and show substantially different structural properties. Indeed, the CDC ligand has a remarkable influence on the overall stability of the resulting low‐coordinate Bi complexes, suggesting that CDC is a superior ligand to NHC in heavy pnictogen chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.