The long‐sought carbene–bismuthinidene, (CAAC)Bi(Ph), has been synthesized. Notably, this represents both the first example of a carbene‐stabilized subvalent bismuth complex and the extension of the carbene‐pnictinidene concept to a non‐toxic metallic element (Bi). The bonding has been investigated by single‐crystal X‐ray diffraction studies and DFT calculations. This report also highlights the hitherto unknown reducing and ligand transfer capability of a beryllium(0) complex.
N‐Heterocyclic carbene (NHC)‐ and cyclic (alkyl)(amino)carbene (CAAC)‐stabilized borafluorene radicals have been isolated and characterized by elemental analysis, single‐crystal X‐ray diffraction, UV/Vis absorption, cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and theoretical studies. Both the CAAC–borafluorene radical (2) and the NHC–borafluorene radical (4) have a considerable amount of spin density localized on the boron atoms (0.322 for 2 and 0.369 for 4). In compound 2, the unpaired electron is also partly delocalized over the CAAC ligand carbeneC and N atoms. However, the unpaired electron in compound 4 mainly resides throughout the borafluorene π‐system, with significantly less delocalization over the NHC ligand. These results highlight the Lewis base dependent electrostructural tuning of materials‐relevant radicals. Notably, this is the first report of crystalline borafluorene radicals, and these species exhibit remarkable solid‐state and solution stability.
The first examples of N‐heterocyclic carbene (NHC) and cyclic(alkyl)(amino) carbene (CAAC) stabilized borepinium and borafluorenium heterocycles are reported herein. The optical properties of the heterocyclic borenium cations were tuned by varying the Lewis base and by changing the number of atoms in the ring. More importantly, functionalizing the cationic boron ring system in the NHC‐borafluorenium cation affords a temperature‐sensitive molecule with reversible colorimetric “turn off/turn on” properties in solution. Notably, this is the first report of thermochromism in these cationic species. This property, which is mediated by an intermolecular boron–oxygen bond equilibrium, was examined in detail by X‐ray crystallography, variable temperature‐UV/Vis absorption spectroscopy (VT‐UV/Vis), and density functional theory (DFT).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.