Source mask optimization (SMO) is one of the indispensable resolution enhancement techniques to guarantee the image fidelity and process robustness for the 2Xnm technology node and beyond. The optimization capacity and convergence efficiency of SMO are important, especially for full-chip SMO. An SMO method using the covariance matrix adaptation evolution strategy (CMA-ES), together with a new source representation method, is proposed in this paper. Based on the forward vector imaging formulation, the encoding and decoding methods of the source and the mask, and the constructed merit function, the source and the mask are optimized using the CMA-ES algorithm. The solution search space and the search step size are adaptively updated during the optimization procedure. Considering the sparsity of the optimal source, the source is represented by a set of ideal point sources with unit intensity and adjustable positions. The advantageous spatial frequency components of the source for imaging performance improvement are identified through the aggregation of the point sources. Simulations and comparisons verify the superior optimization capacity and convergence efficiency of the proposed method.
Optical proximity correction (OPC) is a widely used resolution enhancement technique (RET) in optical lithography to improve the image fidelity and process robustness. The efficiency of OPC is very important, especially for full-chip modification with complicated circuit layout in advanced technology nodes. An efficient OPC method based on virtual edge and mask pixelation with two-phase sampling is proposed in this paper. All kinds of imaging distortions are classified into two categories of imaging anomalies, the inward shrinkage anomaly and the outward extension anomaly. The imaging anomalies are detected around the corners and along the boundaries of the mask features with several anomaly detection templates. Virtual edges are adaptively generated according to the local imaging anomalies. The virtual edges are shifted to adjust the distribution of transparent regions on the mask and modify the local imaging anomalies. Several constraints and strategies are applied for efficient modifications and global control of the contour fidelity. In addition, the diffraction-limited property of the imaging system is fully utilized to separate the imaging evaluations at a coarse sampling level and the mask modifications at a fine sampling level, through the mask pixelation with two-phase sampling. It accelerates the imaging evaluations and guarantees the modification resolution as well. Simulations and comparisons demonstrate the superior modification efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.