Detecting mismatch-repair (MMR) status is crucial for personalized treatment strategies and prognosis in rectal cancer (RC). A preoperative, noninvasive, and cost-efficient predictive tool for MMR is critically needed. Therefore, this study developed and validated machine learning radiomics models for predicting MMR status in patients directly on preoperative MRI scans. Pathologically confirmed RC cases administered surgical resection in two distinct hospitals were examined in this retrospective trial. Totally, 78 and 33 cases were included in the training and test sets, respectively. Then, 65 cases were enrolled as an external validation set. Radiomics features were obtained from preoperative rectal MR images comprising T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), contrast-enhanced T1-weighted imaging (T1WI), and combined multisequences. Four optimal features related to MMR status were selected by the least absolute shrinkage and selection operator (LASSO) method. Support vector machine (SVM) learning was adopted to establish four predictive models, i.e., ModelT2WI, ModelDWI, ModelCE-T1WI, and Modelcombination, whose diagnostic performances were determined and compared by receiver operating characteristic (ROC) curves and decision curve analysis (DCA). Modelcombination had better diagnostic performance compared with the other models in all datasets (all p < 0.05 ). The usefulness of the proposed model was confirmed by DCA. Therefore, the present pilot study showed the radiomics model combining multiple sequences derived from preoperative MRI is effective in predicting MMR status in RC cases.
ObjectiveTo develop and validate a multimodal MRI-based radiomics nomogram for predicting clinically significant prostate cancer (CS-PCa).MethodsPatients who underwent radical prostatectomy with pre-biopsy prostate MRI in three different centers were assessed retrospectively. Totally 141 and 60 cases were included in the training and test sets in cohort 1, respectively. Then, 66 and 122 cases were enrolled in cohorts 2 and 3, as external validation sets 1 and 2, respectively. Two different manual segmentation methods were established, including lesion segmentation and whole prostate segmentation on T2WI and DWI scans, respectively. Radiomics features were obtained from the different segmentation methods and selected to construct a radiomics signature. The final nomogram was employed for assessing CS-PCa, combining radiomics signature and PI-RADS. Diagnostic performance was determined by receiver operating characteristic (ROC) curve analysis, net reclassification improvement (NRI) and decision curve analysis (DCA).ResultsTen features associated with CS-PCa were selected from the model integrating whole prostate (T2WI) + lesion (DWI) for radiomics signature development. The nomogram that combined the radiomics signature with PI-RADS outperformed the subjective evaluation alone according to ROC analysis in all datasets (all p<0.05). NRI and DCA confirmed that the developed nomogram had an improved performance in predicting CS-PCa.ConclusionsThe established nomogram combining a biparametric MRI-based radiomics signature and PI-RADS could be utilized for noninvasive and accurate prediction of CS-PCa.
PurposeTo develop and validate a machine learning classifier based on multidetector computed tomography (MDCT), for the preoperative prediction of tumor–stroma ratio (TSR) expression in patients with pancreatic ductal adenocarcinoma (PDAC).Materials and MethodsIn this retrospective study, 227 patients with PDAC underwent an MDCT scan and surgical resection. We quantified the TSR by using hematoxylin and eosin staining and extracted 1409 arterial and portal venous phase radiomics features for each patient, respectively. Moreover, we used the least absolute shrinkage and selection operator logistic regression algorithm to reduce the features. The extreme gradient boosting (XGBoost) was developed using a training set consisting of 167 consecutive patients, admitted between December 2016 and December 2017. The model was validated in 60 consecutive patients, admitted between January 2018 and April 2018. We determined the XGBoost classifier performance based on its discriminative ability, calibration, and clinical utility.ResultsWe observed low and high TSR in 91 (40.09%) and 136 (59.91%) patients, respectively. A log-rank test revealed significantly longer survival for patients in the TSR-low group than those in the TSR-high group. The prediction model revealed good discrimination in the training (area under the curve [AUC]= 0.93) and moderate discrimination in the validation set (AUC= 0.63). While the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for the training set were 94.06%, 81.82%, 0.89, 0.89, and 0.90, respectively, those for the validation set were 85.71%, 48.00%, 0.70, 0.70, and 0.71, respectively.ConclusionsThe CT radiomics-based XGBoost classifier provides a potentially valuable noninvasive tool to predict TSR in patients with PDAC and optimize risk stratification.
Background Currently, the rate of recurrence or metastasis (ROM) remains high in rectal cancer (RC) patients treated with the standard regimen. The potential of diffusion-weighted imaging (DWI) in predicting ROM risk has been reported, but the efficacy is insufficient. Aims This study investigated the potential of a new sequence called readout-segmented echo-planar imaging (RS-EPI) DWI in predicting the ROM risk of patients with RC using machine learning methods to achieve the principle of predictive, preventive, and personalized medicine (PPPM) application in RC treatment. Methods A total of 195 RC patients from two centres who directly received total mesorectal excision were retrospectively enrolled in our study. Machine learning methods, including recursive feature elimination (RFE), the synthetic minority oversampling technique (SMOTE), and the support vector machine (SVM) classifier, were used to construct models based on clinical-pathological factors (clinical model), radiomic features from RS-EPI DWI (radiomics model), and their combination (merged model). The Harrell concordance index (C-index) and the area under the time-dependent receiver operating characteristic curve (AUC) were calculated to evaluate the predictive performance at 1 year, 3 years, and 5 years. Kaplan‒Meier analysis was performed to evaluate the ability to stratify patients according to the risk of ROM. Findings The merged model performed well in predicting tumour ROM in patients with RC at 1 year, 3 years, and 5 years in both cohorts (AUC = 0.887/0.813/0.794; 0.819/0.795/0.783) and was significantly superior to the clinical model (AUC = 0.87 [95% CI: 0.80–0.93] vs. 0.71 [95% CI: 0.59–0.81], p = 0.009; C-index = 0.83 [95% CI: 0.76–0.90] vs. 0.68 [95% CI: 0.56–0.79], p = 0.002). It also had a significant ability to differentiate patients with a high and low risk of ROM (HR = 12.189 [95% CI: 4.976–29.853], p < 0.001; HR = 6.427 [95% CI: 2.265–13.036], p = 0.002). Conclusion Our developed merged model based on RS-EPI DWI accurately predicted and effectively stratified patients with RC according to the ROM risk at an early stage with an individualized profile, which may be able to assist physicians in individualizing the treatment protocols and promote a meaningful paradigm shift in RC treatment from traditional reactive medicine to PPPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.