In just under seven years, Twitter has grown to count nearly 3% of the entire global population among its active users who have sent more than 170 billion 140-character messages. Today the service plays such a significant role in American culture that the Library of Congress has assembled a permanent archive of the site back to its first tweet, updated daily. With its open API, Twitter has become one of the most popular data sources for social research, yet the majority of the literature has focused on it as a text or network graph source, with only limited efforts to date focusing exclusively on the geography of Twitter, assessing the various sources of geographic information on the service and their accuracy. More than 3% of all tweets are found to have native location information available, while a naive geocoder based on a simple major cities gazetteer and relying on the user-provided Location and Profile fields is able to geolocate more than a third of all tweets with high accuracy when measured against the GPS-based baseline. Geographic proximity is found to play a minimal role both in who users communicate with and what they communicate about, providing evidence that social media is shifting the communicative landscape.
Characterizing human mobility patterns is essential for understanding human behaviors and the interactions with socioeconomic and natural environment, and plays a critical role in public health, urban planning, transportation engineering and related fields. With the widespread of location-aware mobile devices and continuing advancement of Web 2.0 technologies, location-based social media (LBSM) have been gaining widespread popularity in the past few years. With an access to locations of hundreds of million users, profiles and the contents of the social media posts, the LBSM data provided a novel modality of data source for human mobility study. By exploiting the explicit location footprints and mining the latent demographic information implied in the LBSM data, the purpose of this paper is to investigate the spatiotemporal characteristics of human mobility with a particular focus on the impact of demography. To serve this purpose, we first collect geo-tagged Twitter feeds posted in the conterminous United States area, and organize the collection of feeds using the concept of space-time trajectory corresponding to each Twitter user. Commonly human mobility measures, including detected home and activity centers, are derived for each user trajectory. We then select a subset of Twitter users that have detected home locations in the city of Chicago as a case study, and apply name analysis to the names provided in user profiles to learn the implicit demographic information of Twitter users, including race/ethnicity, gender and age. Finally we explore the spatiotemporal distribution and mobility characteristics of Chicago Twitter users, and investigate the demographic impact by comparing the differences across three demographic dimensions (race/ethnicity, gender and age). We found that, although the human mobility measures of different demographic groups generally follow the generic laws (e.g., power law distribution), the demographic information, particular the race/ethnicity group, significantly affects the urban human mobility patterns.
a b s t r a c tIn the past several years, social media (e.g., Twitter and Facebook) has experienced a spectacular rise in popularity and has become a ubiquitous location for discourse, content sharing and social networking. With the widespread adoption of mobile devices and location-based services, social media typically allows users to share the whereabouts of daily activities (e.g., check-ins and taking photos), thus strengthening the role of social media as a proxy for understanding human behaviors and complex social dynamics in geographic spaces. Unlike conventional spatiotemporal data, this new modality of data is dynamic, massive, and typically represented in a stream of unstructured media (e.g., texts and photos), which pose fundamental representation, modeling and computational challenges to conventional spatiotemporal analysis and geographic information science. In this paper, we describe a scalable computational framework to harness massive location-based social media data for efficient and systematic spatiotemporal data analysis. Within this framework, the concept of space-time trajectories (or paths) is applied to represent activity profiles of social media users. A hierarchical spatiotemporal data model, namely a spatiotemporal data cube model, is developed based on collections of space-time trajectories to represent the collective dynamics of social media users across aggregation boundaries at multiple spatiotemporal scales. The framework is implemented based upon a public data stream of Twitter feeds posted on the continent of North America. To demonstrate the advantages and performance of this framework, an interactive flow mapping interface (including both single-source and multiple-source flow mapping) is developed to allow real-time and interactive visual exploration of movement dynamics in massive location-based social media data at multiple scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.