A tunable stiffness and damping vibration isolator based on magnetorheological elastomers (MREs) is developed. In this isolator, four MRE elements are used as the tunable springs, whose stiffness can be controlled by varying the magnetic field. A voice coil motor, which is controlled by the relative velocity feedback of the payload, is used as the tunable damper of the isolator. Under the combined ON–OFF control, the proposed vibration isolator shows satisfying isolation effect. The experimental results indicate that the responses of the payload are suppressed significantly in comparison to the passive system. The transmissibility of the payload around the resonant frequency is decreased by 61.5%. The root mean square (RMS) value and the maximum value of the displacement responses of the payload are decreased by 36.0% and 50.0%, respectively. In addition, the RMS values and maximum values of the velocity responses are decreased by 45.4% and 52.5%, respectively.
This paper presents an active-adaptive tuned vibration absorber (AATVA) which is based on magnetorheological elastomer (MRE). A voice coil motor is attached to a conventional MRE adaptive tuned vibration absorber (ATVA) to improve its performance. In this study, two feedback types of the activation force were analyzed and the stability condition was obtained. In order to eliminate the time delay effect during the signal processing, a phase-lead compensator was incorporated. Based on the analysis, an MRE AATVA prototype was designed and its dynamic properties were experimentally investigated. The experimental results demonstrated that its resonant frequency could vary from 11 to 18 Hz and its damping ratio decreased to roughly 0.05 from 0.19 by adding the activation force. Besides, its vibration reduction abilities at the first two resonant frequencies of the experimental platform could reach 5.9 dB and 7.9 dB respectively.
Related Articles Observation of strong magnetoelectric effects in Ba0.7Sr0.3TiO3/La0.7Sr0.3MnO3 thin film heterostructures J. Appl. Phys. 111, 104104 (2012) Shear-mode magnetostrictive/piezoelectric composite with an enhanced magnetoelectric coefficient Appl. Phys. Lett. 100, 202903 (2012) A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors Appl. Phys. Lett. 100, 173506 (2012) Variation and sign change of magnetostrictive strain as a function of Ni concentration in Ni-substituted ZnFe2O4 sintered nanoparticles J. Appl. Phys. 111, 073903 (2012) Electronic origin of the negligible magnetostriction of an electric steel Fe1-xSix alloy: A density-functional study J. Appl. Phys. 111, 063911 (2012) Additional information on Appl. Phys. Lett.
The magnetic-field-induced normal force of magnetorheological elastomer (MRE) under compression status is studied in this paper. The influence of monotonic loading of the magnetic field, particle distribution, temperature, and cyclic loading of the magnetic field are investigated. The experimental results show that the normal force increases with increasing magnetic field and precompression force. For aligned MRE, the change of the magnetic-field-induced normal force is larger than that of isotropic MRE due to the special chainlike structure. When the temperature increases, the maximum change of the magnetic-field-induced normal force first increases and then decreases, due to the interaction of iron particles and the decreasing of the saturation magnetization of the carbonyl iron particles. If the magnetic field is circularly applied on the MRE, the normal force during unloading is smaller than that during loading due to the stress relaxation.
This article presents the development of an active-damping-compensated magnetorheological elastomer (MRE) adaptive tuned vibration absorber (ATVA). The principle and the vibration attenuation performance of the proposed active-damping-compensated ATVA were theoretically analyzed. Based on the analysis, a prototype was designed and manufactured. Its dynamic properties and vibration attenuation performances were experimentally investigated. The experimental results demonstrated that the damping ratio of the prototype was significantly reduced by the active force. Consequently, its vibration attenuation capability was significantly improved compared with a conventional MRE ATVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.