With the proliferation of mobile devices and wireless technologies, mobile social network systems are increasingly available. A mobile social network plays an essential role as the spread of information and influence in the form of "word-of-mouth". It is a fundamental issue to find a subset of influential individuals in a mobile social network such that targeting them initially (e.g. to adopt a new product) will maximize the spread of the influence (further adoptions of the new product). The problem of finding the most influential nodes is unfortunately NP-hard. It has been shown that a Greedy algorithm with provable approximation guarantees can give good approximation; However, it is computationally expensive, if not prohibitive, to run the greedy algorithm on a large mobile network.In this paper we propose a new algorithm called Communitybased Greedy algorithm for mining top-K influential nodes. The proposed algorithm encompasses two components: 1) an algorithm for detecting communities in a social network by taking into account information diffusion; and 2) a dynamic programming algorithm for selecting communities to find influential nodes. We also provide provable approximation guarantees for our algorithm. Empirical studies on a large real-world mobile social network show that our algorithm is more than an order of magnitudes faster than the state-of-the-art Greedy algorithm for finding top-K influential nodes and the error of our approximate algorithm is small.
In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the problem that one entity tries to block the influence propagation of its competing entity as much as possible by strategically selecting a number of seed nodes that could initiate its own influence propagation. We call this problem the influence blocking maximization (IBM) problem. We prove that the objective function of IBM in the CLT model is submodular, and thus a greedy algorithm could achieve 1−1/e approximation ratio. However, the greedy algorithm requires Monte-Carlo simulations of competitive influence propagation, which makes the algorithm not efficient. We design an efficient algorithm CLDAG, which utilizes the properties of the CLT model, to address this issue. We conduct extensive simulations of CLDAG, the greedy algorithm, and other baseline algorithms on real-world and synthetic datasets. Our results show that CLDAG is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithm.
Network embedding, as an approach to learn low-dimensional representations of vertices, has been proved extremely useful in many applications. Lots of state-of-the-art network embedding methods based on Skip-gram framework are efficient and effective. However, these methods mainly focus on the static network embedding and cannot naturally generalize to the dynamic environment. In this paper, we propose a stable dynamic embedding framework with high efficiency. It is an extension for the Skip-gram based network embedding methods, which can keep the optimality of the objective in the Skip-gram based methods in theory. Our model can not only generalize to the new vertex representation, but also update the most affected original vertex representations during the evolvement of the network. Multi-class classification on three real-world networks demonstrates that, our model can update the vertex representations efficiently and achieve the performance of retraining simultaneously. Besides, the visualization experimental result illustrates that, our model is capable of avoiding the embedding space drifting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.