Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.