Graphene-based strain sensors have attracted much attention recently. Usually, there is a trade-off between the sensitivity and resistance of such devices, while larger resistance devices have higher energy consumption. In this paper, we report a tuning of both sensitivity and resistance of graphene strain sensing devices by tailoring graphene nanostructures. For a typical piezoresistive nanographene film with a sheet resistance of ∼100 KΩ/□, a gauge factor of more than 600 can be achieved, which is 50× larger than those in previous studies. These films with high sensitivity and low resistivity were also transferred on flexible substrates for device integration for force mapping. Each device shows a high gauge factor of more than 500, a long lifetime of more than 10(4) cycles, and a fast response time of less than 4 ms, suggesting a great potential in electronic skin applications.
2D semiconductors are promising channel materials for field-effect transistors (FETs) with potentially strong immunity to short-channel effects (SCEs). In this paper, a grain boundary widening technique is developed to fabricate graphene electrodes for contacting monolayer MoS . FETs with channel lengths scaling down to ≈4 nm can be realized reliably. These graphene-contacted ultrashort channel MoS FETs exhibit superior performances including the nearly Ohmic contacts and excellent immunity to SCEs. This work provides a facile route toward the fabrication of various 2D material-based devices for ultrascaled electronics.
Control of the precise lattice alignment of monolayer molybdenum disulfide (MoS ) on hexagonal boron nitride (h-BN) is important for both fundamental and applied studies of this heterostructure but remains elusive. The growth of precisely aligned MoS domains on the basal plane of h-BN by a low-pressure chemical vapor deposition technique is reported. Only relative rotation angles of 0° or 60° between MoS and h-BN basal plane are present. Domains with same orientation stitch and form single-crystal, domains with different orientations stitch and from mirror grain boundaries. In this way, the grain boundary is minimized and a continuous film stitched by these two types of domains with only mirror grain boundaries is obtained. This growth strategy is also applicable to other 2D materials growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.