The tuberculous granuloma is an elaborately organized structure and one of the main histological hallmarks of tuberculosis. Macrophages, which are important immunologic effector and antigen-presenting cells, are the main cell type found in the tuberculous granuloma and have high plasticity. Macrophage polarization during bacterial infection has been elucidated in numerous recent studies; however, macrophage polarization during tuberculous granuloma formation and development has rarely been reported. It remains to be clarified whether differences in the activation status of macrophages affect granuloma formation. In this study, the variation in macrophage polarization during the formation and development of tuberculous granulomas was investigated in both sections of lung tissues from tuberculosis patients and an in vitro tuberculous granuloma model. The roles of macrophage polarization in this process were also investigated. Mycobacterium tuberculosis (M. tuberculosis) infection was found to induce monocyte-derived macrophage polarization. In the in vitro tuberculous granuloma model, macrophage transformation from M1 to M2 was observed over time following M. tuberculosis infection. M2 macrophages were found to predominate in both necrotic and non-necrotic granulomas from tuberculosis patients, while both M1 and M2 polarized macrophages were found in the non-granulomatous lung tissues. Furthermore, it was found that M1 macrophages promote granuloma formation and macrophage bactericidal activity in vitro, while M2 macrophages inhibit these effects. The findings of this study provide insights into the mechanism by which M. tuberculosis circumvents the host immune system as well as a theoretical foundation for the development of novel tuberculosis therapies based on reprogramming macrophage polarization.
Tuberculosis remains a global health problem caused by infection with Mycobacterium tuberculosis. Numerous studies have established a close correlation between the development of tuberculosis and the roles of neutrophils. Recently, a distinct population of CD15+ granulocytes was found to be present in the peripheral blood mononuclear cell (PBMC) fraction in humans. This population of granulocytes, termed low-density granulocytes (LDGs), was reported to be elevated and associated with disease activity or severity in a number of different conditions including SLE, asthma and HIV infection. However, both the frequency and clinical significance of LDGs associated with tuberculosis are unclear. Here we determined LDG levels and made comparisons between subjects with active pulmonary tuberculosis (PTB) and healthy controls, between PTB patients with mild-to-moderate disease and patients with advanced disease, and among PTB patients following anti-tuberculous therapy of varying durations. The direct correlation between M. tuberculosis infection and LDG levels was confirmed by in vitro infection of whole peripheral blood and isolated granulocytes with mycobacteria. Our results demonstrated that PBMCs in PTB patients contained significantly elevated percentages of LDGs compared with control subjects. LDGs in tuberculosis expressed higher levels of activation markers compared to normal-density granulocytes (NDGs). M. tuberculosis induced the generation of LDGs in both whole blood and isolated NDGs from control subjects, which suggests that LDGs associated with M. tuberculosis infection are likely to originate from in situ activation. Furthermore, our results revealed that the frequency of LDGs is associated with the severity of tuberculosis.
The progression of b-amyloid deposition in the brains of mice overexpressing Swedish mutant b-amyloid precursor protein (APPSwe), a model of Alzheimer disease (AD), was investigated in a longitudinal PET study using the novel b-amyloid tracer 18 Fflorbetaben. Methods: Groups of APP-Swe and age-matched wild-type (WT) mice (age range, 10-20 mo) were investigated. Dynamic emission recordings were acquired with a small-animal PET scanner during 90 min after the administration of 18 F-florbetaben (9 MBq, intravenously). After spatial normalization of individual PET recordings to common coordinates for mouse brain, binding potentials (BP ND ) and standardized uptake value ratios (SUVRs) were calculated relative to the cerebellum. Voxelwise analyses were performed using statistical parametric mapping (SPM). Histochemical analyses and ex vivo autoradiography were ultimately performed in a subset of animals as a gold standard assessment of b-amyloid plaque load. Results: SUVRs calculated from static recordings during the interval of 30-60 min after tracer injection correlated highly with estimates of BP ND based on the entire dynamic emission recordings. 18 F-florbetaben binding did not significantly differ in APP-Swe mice and WT animals at 10 and 13 mo of age. At 16 mo of age, the APP-Swe mice had a significant 7.9% increase (P , 0.01) in cortical 18 F-florbetaben uptake above baseline and at 20 mo there was a 16.6% increase (P , 0.001), whereas WT mice did not show any temporal changes in tracer uptake during the interval of follow-up. Voxelwise SPM analyses revealed the first signs of increased cortical binding at 13 mo and confirmed progressive binding increases in both the frontal and the temporal cortices (P , 0.001 uncorrected) to 20 mo. The SUVR strongly correlated with percentage plaque load (R 5 0.95, P , 0.001). Conclusion: In the first longitudinal PET study in an AD mouse model using the novel b-amyloid tracer 18 F-florbetaben, the temporal and spatial progression of amyloidogenesis in the brain of APP-Swe mice were sensitively monitored. This method should afford the means for preclinical testing of novel therapeutic approaches to the treatment of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.