BackgroundThe family Brassicaceae encompasses diverse species, many of which have high scientific and economic importance. Early diversifications and phylogenetic relationships between major lineages or clades remain unclear. Here we re-investigate Brassicaceae phylogeny with complete plastomes from 51 species representing all four lineages or 5 of 6 major clades (A, B, C, E and F) as identified in earlier studies.ResultsBayesian and maximum likelihood phylogenetic analyses using a partitioned supermatrix of 77 protein coding genes resulted in nearly identical tree topologies exemplified by highly supported relationships between clades. All four lineages were well identified and interrelationships between them were resolved. The previously defined Clade C was found to be paraphyletic (the genus Megadenia formed a separate lineage), while the remaining clades were monophyletic. Clade E (lineage III) was sister to clades B + C rather than to all core Brassicaceae (clades A + B + C or lineages I + II), as suggested by a previous transcriptome study. Molecular dating based on plastome phylogeny supported the origin of major lineages or clades between late Oligocene and early Miocene, and the following radiative diversification across the family took place within a short timescale. In addition, gene losses in the plastomes occurred multiple times during the evolutionary diversification of the family.ConclusionsPlastome phylogeny illustrates the early diversification of cruciferous species. This phylogeny will facilitate our further understanding of evolution and adaptation of numerous species in the model family Brassicaceae.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-017-3555-3) contains supplementary material, which is available to authorized users.
Species delimitation is fundamental to the basic understanding of biodiversity because of the central role that the concept of species plays in most branches of biology. However, few studies have been designed to test conflicting delineations of plant species under an integrated species concept using DNA barcodes in combination with other lines of evidence. Such an approach may deliver more objective, testable and uniform species units as subjects for a range of studies. Here we aim to examine competing hypotheses of species delimitation in Orychophragmus, a member of the mustard family, based on these methods and principles. Two to seven species have previously been recognized in this genus by different taxonomists. We sequenced five commonly used DNA barcodes (nuclear ribosomal ITS and chloroplast matK, rbcL, trnH‐psbA, and trnL‐F) for 160 individuals collected across the major distribution ranges of all taxa currently recognized in the genus. Based on the monophyletic clusters produced by analysis of the combined nrITS and cpDNA sequence variations, we recovered nine independent evolutionary lineages that were further supported by diagnosable morphological traits, distinct inter‐cluster genetic gaps, reproductive isolation, and geographical distribution. These lineages may be treated as nine species. We also found substantial differences in the capacity of nrITS and cpDNA barcodes to discriminate between closely related species in two clades of the genus. Our empirical study of Orychophragmus highlights the importance of applying both chloroplast DNA and nrITS barcodes for species delimitation in plants.
Eutrema is a genus in the Brassicaceae, which includes species of scientific and economic importance. Many Eutrema species are montane and/or alpine species that arose very recently, making them ideal candidates for comparative studies to understand both ecological speciation and high-altitude adaptation in plants. Here we provide de novo whole-genome assemblies for a pair of recently diverged perennials with contrasting altitude preferences, the high-altitude E. heterophyllum from the eastern Qinghai-Tibet Plateau and its lowland congener E. yunnanense. The two assembled genomes are 350 Mb and 412 Mb, respectively, with 29,606 and 28,881 predicted genes. Comparative analysis of the two species revealed contrasting demographic trajectories and evolution of gene families. Gene family expansions shared between E. heterophyllum and other alpine species were identified, including the disease resistance R genes (NBS-LRRs or NLRs). Genes that are duplicated specifically in the high-altitude E. heterophyllum are involved mainly in reproduction, DNA damage repair and cold tolerance. The two Eutrema genomes reported here constitute important genetic resources for diverse studies, including the evolution of the genus Eutrema, of the Brassicaceae as a whole and of alpine plants across the world.
“Sky island” species diversification contributes greatly to mountainous biodiversity. However, the underlying genomic divergence and the inferred drivers remain largely unknown. In this study, we examined the diversification history of five diploid species with three exclusively endemic to the sky islands (mountains) of the Himalaya–Hengduan Mountains biodiversity hotspot. All of them together comprise a clade of the genus Eutrema (Brassicaceae). We resequenced genomes of multiple individuals of the found populations for each species. We recovered the inconsistent phylogenetic relationships between plastome and nuclear‐genome trees for one species. Based on nuclear population genomic data, we detected high genetic divergence between five species with limited gene flow. Four species seemed to diverge mainly through geographical isolation, whereas one arose through hybrid origin. The origins of the sampled five species were dated to within the late Miocene when mountains were uplifted and climates oscillated. All species decreased their population sizes since the inferred origin of each species initially, but only two of them expanded after the Last Glacial Maximum. Together, these findings suggest that geographic isolation plays an important role in driving the sky island species diversification of the sampled species in addition to the occasional gene flow that might have led to the hybrid origin of some sky island species, similar to the species diversification of sea islands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.