PLA is a renewable, bio-based, and biodegradable aliphatic thermoplastic polyester that is considered a promising alternative to petrochemical-derived polymers in a wide range of commodity and engineering applications.
Broader contextCarbon foam is a three-dimensional (3D) porous carbon material with an interconnected network architecture. It is usually prepared by the carbonization/pyrolysis of foamed polymers. Recently, ultrathin and exible energy storage devices have attracted much attention to meet
Visualization of chromosomal dynamics is important for understanding many fundamental intra-nuclear processes. Efficient and reliable live-cell multicolor labeling of chromosomal loci can realize this goal. However, the current methods are constrained mainly by insufficient labeling throughput, efficiency, flexibility as well as photostability. Here we have developed a new approach to realize dual-color chromosomal loci imaging based on a modified single-guide RNA (sgRNA) of the CRISPR/Cas9 system. The modification of sgRNA was optimized by structure-guided engineering of the original sgRNA, consisting of RNA aptamer insertions that bind fluorescent protein-tagged effectors. By labeling and tracking telomeres, centromeres and genomic loci, we demonstrate that the new approach is easy to implement and enables robust dual-color imaging of genomic elements. Importantly, our data also indicate that the fast exchange rate of RNA aptamer binding effectors makes our sgRNA-based labeling method much more tolerant to photobleaching than the Cas9-based labeling method. This is crucial for continuous, long-term tracking of chromosomal dynamics. Lastly, as our method is complementary to other live-cell genomic labeling systems, it is therefore possible to combine them into a plentiful palette for the study of native chromatin organization and genome ultrastructure dynamics in living cells.
Hydrodynamic imaging using the lateral line plays a critical role in fish behavior. To engineer such a biologically inspired sensing system, we developed an artificial lateral line using MEMS (microelectromechanical system) technology and explored its localization capability. Arrays of biomimetic neuromasts constituted an artificial lateral line wrapped around a cylinder. A beamforming algorithm further enabled the artificial lateral line to image real-world hydrodynamic events in a 3D domain. We demonstrate that the artificial lateral line system can accurately localize an artificial dipole source and a natural tail-flicking crayfish under various conditions. The artificial lateral line provides a new sense to man-made underwater vehicles and marine robots so that they can sense like fish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.