With the increasing popularity of the Internet of Things (IoT), the issue of its information security has drawn more and more attention. To overcome the resource constraint barrier for secure and reliable data transmission on the widely used IoT devices such as wireless sensor network (WSN) nodes, many researcher studies consider hardware acceleration of traditional cryptographic algorithms as one of the effective methods. Meanwhile, as one of the current research topics in the reduced instruction set computer (RISC), RISC-V provides a solid foundation for implementing domain-specific architecture (DSA). To this end, we propose an extended instruction scheme for the advanced encryption standard (AES) based on RISC-V custom instructions and present a coprocessor designed on the open-source core Hummingbird E203. The AES coprocessor uses direct memory access channels to achieve parallel data access and processing, which provides flexibility in memory space allocation and improves the efficiency of cryptographic components. Applications with embedded AES custom instructions running on an experimental prototype of the field-programmable gate array (FPGA) platform demonstrated a 25.3% to 37.9% improvement in running time over previous similar works when processing no less than 80 bytes of data. In addition, the application-specific integrated circuit (ASIC) experiments show that in most cases, the coprocessor only consumes up to 20% more power than the necessary AES operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.