Host control of
IFN-␥-treated primary macrophages from iNOS؊/؊ and p47 phox؊/؊ mice significantly inhibited replication but were less efficient at controlling infection than IFN-␥-treated wild-type macrophages. To investigate the contributions of ROI and RNI to resistance to infection, we performed in vivo studies, using C57BL/6 wild-type mice and knockout mice lacking iNOS or p47 phox . Both iNOS ؊/؊ and p47 phox؊/؊ mice were attenuated in the ability to control C. burnetii infection compared to wild-type mice. Together, these results strongly support a role for both RNI and ROI in the host control of C. burnetii infection.
Coxiella burnetii is an obligate intracellular bacterium that causes acute and chronic Q fever in humans. Human Q fever is mainly transmitted by aerosol infection. However, there is a fundamental gap in the knowledge regarding the mechanisms of pulmonary immunity against C. burnetii infection. This study focused on understanding the interaction between C. burnetii and innate immune cells in vitro and in vivo. Both virulent C. burnetii Nine Mile phase I (NMI) and avirulent Nine Mile phase II (NMII) were able to infect neutrophils, while the infection rates were lower than 29%, suggesting that C. burnetii can infect neutrophils, but infection is limited. Interestingly, C. burnetii inside neutrophils can infect and replicate within macrophages, suggesting that neutrophils cannot kill C. burnetii and C. burnetii may be using infection of neutrophils as an evasive strategy to infect macrophages. To elucidate the mechanisms of the innate immune response to C. burnetii natural infection, SCID mice were exposed to aerosolized C. burnetii. Surprisingly, neutrophil influx into the lungs was delayed until day 7 postinfection in both NMI-and NMII-infected mice. This result suggests that neutrophils may play a unique role in the early immune response against aerosolized C. burnetii. Studying the interaction between C. burnetii and the innate immune system can provide a model system for understanding how the bacteria evade early immune responses to cause infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.