This paper presents an investigation of transient pool boiling heat transfer phenomena in water at atmospheric pressure under exponentially escalating heat fluxes on plate-type heaters. Exponential power escalations with periods ranging from 5 to 100 milliseconds, and subcooling of 0, 25 and 75 K were explored. What makes this study unique is the use of synchronized state-ofthe-art diagnostics such as InfraRed (IR) thermometry and High-Speed Video HSV, which enabled accurate measurements and provided new and unique insight into the transient boiling heat transfer phenomena. The onset of nucleate boiling (ONB) conditions were identified. The experimental data suggest that ONB temperature and heat flux increase monotonically with decreasing period and increasing subcooling, in accordance with the predictions of a model based on transient conduction and the nucleation site activation criterion. Various boiling regimes were observed during the transition from ONB to fully developed nucleate boiling (FDNB). Onset of the boiling driven (OBD) heat transfer regime and overshoot (OV) conditions were identified, depending on the period of the power escalation and the subcooling. Forced convection effects have also been investigated and are discussed in the companion paper (Part II).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.