This study aims at analyzing the combined impact of uncertainties in initial conditions and wind forcing fields in ocean general circulation models (OGCM) using polynomial chaos (PC) expansions. Empirical orthogonal functions (EOF) are used to formulate both spatial perturbations to initial conditions and space-time wind forcing perturbations, namely in the form of a superposition of modal components with uniformly distributed random amplitudes. The forward deterministic HYbrid Coordinate Ocean Model (HYCOM) is used to propagate input uncertainties in the Gulf of Mexico (GoM) in spring 2010, during the Deepwater Horizon oil spill, and to generate the ensemble of model realizations based on which PC surrogate models are constructed for both localized and field quantities of interest (QoIs), focusing specifically on sea surface height (SSH) and mixed layer depth (MLD). These PC surrogate models are constructed using basis pursuit denoising methodology, and their performance is assessed through various statistical measures. A global sensitivity analysis is then performed to quantify the impact of individual modes as well as their interactions. It shows that the local SSH at the edge of the GoM main current-the Loop Currentis mostly sensitive to perturbations of the initial conditions affecting the current front, whereas the local MLD in the area of the Deepwater Horizon oil spill is more sensitive to wind forcing perturbations. At the basin scale, the SSH in the deep GoM is mostly sensitive to initial condition perturbations, while over the shelf it is sensitive to wind forcing perturbations. On the other hand, the basin MLD is almost exclusively sensitive to wind perturbations. For both quantities, the two sources of uncertainty have limited interactions. Finally, the computations indicate that whereas local quantities can exhibit complex behavior that necessitates a large number of realizations, the modal analysis of field sensitivities can be suitably achieved with a moderate size ensemble.
This study focuses on understanding the evolution of Hurricane Earl (2010) with respect to random perturbations in the storm’s initial strength, size, and asymmetry in wind distribution. We rely on the Unified Wave Interface-Coupled Model (UWIN-CM), a fully coupled atmosphere–wave–ocean system to generate a storm realization ensemble, and use polynomial chaos (PC) expansions to build surrogate models for time evolution of both the maximum wind speed and minimum sea level pressure in Earl. The resulting PC surrogate models provide statistical insights on probability distributions of model responses throughout the simulation time span. Statistical analysis of rapid intensification (RI) suggests that initial perturbations having intensified and counterclockwise-rotated winds are more likely to undergo RI. In addition, for the range of initial conditions considered RI seems mostly sensitive to azimuthally averaged maximum wind speed and asymmetry orientation, rather than storm size and asymmetry magnitude; this is consistent with global sensitivity analysis of PC surrogate models. Finally, we combine initial condition perturbations with a stochastic kinetic energy backscatter scheme (SKEBS) forcing in the UWIN-CM simulations and conclude that the storm tracks are substantially influenced by the SKEBS forcing perturbations, whereas the perturbations in initial conditions alone had only limited impact on the storm-track forecast.
Abstract. In this paper, we employed polynomial chaos (PC) expansions to understand earthquake rupture model responses to random fault plane properties. A sensitivity analysis based on our PC surrogate model suggests that the hypocenter location plays a dominant role in peak ground velocity (PGV) responses, while elliptical patch properties only show secondary impact. In addition, the PC surrogate model is utilized for Bayesian inference of the most likely underlying fault plane configuration in light of a set of PGV observations from a ground-motion prediction equation (GMPE). A restricted sampling approach is also developed to incorporate additional physical constraints on the fault plane configuration and to increase the sampling efficiency.
Abstract. In this paper we employed polynomial chaos (PC) expansions to understand earthquake rupture model responses to random fault plane properties. A sensitivity analysis based on our PC surrogate model suggests that the hypocenter location plays a dominant role in peak ground velocity (PGV) responses, while elliptical patch properties only show secondary impact.In addition, the PC surrogate model is utilized for Bayesian inference of the most likely underlying fault plane configuration in light of a set of PGV observations from a ground motion prediction equation (GMPE). A restricted sampling approach is 5 also developed to incorporate additional physical constraints on the fault plane configuration, and to increase the sampling efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.