Device-to-device(D2D) communication combined with non-orthogonal multiple access(NOMA) can further improve the quality of service for future communications systems and increase spectrum utilization and connection density in cellular networks. In this paper, an effective power allocation scheme is designed to optimize the performance of a D2D communication system based on NOMA for imperfect Successive Interference Cancellation(SIC) decoding. To solve the non-convexity of the problem due to integer constraints and coupling variables, an alternate optimization algorithm was designed to obtain the optimal solution of each subproblem by Lagrange duality analysis and the sub-gradient descent method. Finally, the numerical simulation results demonstrate the performance advantages of the proposed joint optimization algorithm for channel resource allocation and power control in energy efficiency.INDEX TERMS Non-orthogonal multiple accesses, D2D Channel resource allocation, Power allocation, Lagrange duality analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.