In the fast growing 2D materials family, anisotropic 2D materials, with their intrinsic in‐plane anisotropy, exhibit a great potential in optoelectronics. One such typical material is black phosphorus (BP), with a layer‐dependent and highly tunable bandgap. Such intrinsic anisotropy adds a new degree of freedom to the excitation, detection, and control of light. Particularly, hyperbolic plasmons with hyperbolic q‐space dispersion are predicted to exist in BP films, where highly directional propagating polaritons with divergent densities of states are hosted. Combined with a tunable electronic structure, such natural hyperbolic surfaces may enable a series of exotic applications in nanophotonics. Herein, the anisotropic optical properties and plasmons (especially hyperbolic plasmons) of BP are discussed. In addition, other possible 2D material candidates (especially anisotropic layered semimetals) for hyperbolic plasmons are examined. This review may stimulate further research interest in anisotropic 2D materials and fully unleash their potential in flatland photonics.
Abstract:Wind power generation reduces our reliance on fossil fuels and can thus reduce environmental pollution. However, rapid wind power development has caused various issues related to power grid restructuring. A high proportion of the generating capacity of northeast China is based on combined heat and power (CHP), whose inflexible response to the peak regulation of power grids hinders the ability to accommodate wind power; thus, wind power curtailment is prevalent. Electric boilers can directly consume the excess wind power to supply heat during low load periods and thus mitigate the heat supply stress of CHP units. Therefore, electric boilers improve the power grid's ability to accommodate additional wind power. From a regional power grid perspective, this paper discussed the feasibility of such a strategy for increasing the ability to accommodate wind power during the heat supply season. This paper analysed the optimum electric boiler capacity configuration of a regional power grid based on various constraint conditions, such as the heat-power balance, with the objective of maximising the associated social benefits. Using the Beijing-Tianjin-Hebei power grid as an example, the optimum electric boiler capacity of the studied power grid is approximately 1100 MW.
Interferometers are essential elements in classical and quantum optical systems. The strictly required stability when extracting the phase of photons is vulnerable to polarization variation and phase shift induced by environment disturbance. Here, we implement polarization-insensitive interferometers by combining silica planar light-wave circuit chips and Faraday rotator mirrors. Two asymmetric interferometers with temperature controllers are connected in series to evaluate the single-photon interference. Average interference visibility over 12 h is above 99%, and the variations are less than 0.5%, even with active random polarization disturbance. The experiment results verify that the hybrid chip is available for high-demand applications like quantum key distribution and entanglement measurement.
-As the market share of automotive display increased, special used displays are required; BOE developed 12.3-inch automotive free-form curved cluster. For this product, free-form and curved design can be matched in vehicle preferably. Meanwhile, it is designed in automotive class, which means that this product will perform excellently in severe environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.