Despite the high theoretical capacity of Si anodes, the electrochemical performance of Si anodes is hampered by severe volume changes during lithiation and delithiation, leading to poor cyclability and eventual electrode failure. Nanostructured silicon and its nanocomposite electrodes could overcome this problem holding back the deployment of Si anodes in lithium‐ion batteries (LIBs) by providing facile strain relaxation, short lithium diffusion distances, enhanced mass transport, and effective electrical contact. Here, the recent progress in nanostructured Si‐based anode materials such as nanoparticles, nanotubes, nanowires, porous Si, and their respective composite materials and fabrication processes in the application of LIBs have been reviewed. The ability of nanostructured Si materials in addressing the above mentioned challenges have been highlighted. Future research directions in the field of nanostructured Si anode materials for LIBs are summarized.
A three-dimensional body scanning technique is used to measure the air gap layer distribution between different-sized protective garments and the body of a manikin used to evaluate garment thermal protective performance. The influence of fabric material and garment size on the manikin skin-clothing air gap layers existing in single layer thermally protective coveralls is analyzed. Protective performance of these garments is evaluated using the Manikin Thermal Protective Clothing Analysis System. Relationships between the burn patterns, measured on a flash fire manikin and measured manikin-garment air gap layers, are examined. The effects of thermally induced shrinkage as a result of flash fire exposure are discussed in comparisons between single layer protective coverall clothing made with heat resistant fabrics. An established numerical model is used to forecast the dimensions of skin-clothing air gap for optimum thermal protection.
This study explores the behavior of textile fabrics under thermal exposures. The performance of thermal protective textile fabric systems with different structural features was evaluated under laboratory simulated thermal exposures. The study demonstrated that the protective performance of textile fabric systems varies with different types of thermal exposure. To provide effective protection in flame and radiant-heat exposures, the most important fabric properties to address are emissivity, absorptivity and thermal resistance. In hot surface exposures, the compression property of the fabric systems is the primary feature to consider for protection. Hot water and steam exposures produce mass transfer through fabrics. In the presence of water or steam jet pressure, fabric compression is a primary factor in protecting the human body. The findings obtained in this study can be used to engineer fabric systems that provide better protection from various thermal exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.