Bulk-magnetoelectric (ME) composites consisting of various piezoelectric and piezomagnetic materials with (3-0), (3-1), (2-2), and (2-1) connectivity are proposed in a bid to realize strong ME coupling for next-generation electronic-device applications. Here, 1D (1-1) connectivity ME composites consisting of a [011]-oriented Pb(Mg,Nb)O -PbTiO (PMN-PT) single-crystal fiber laminated with laser-treated amorphous FeBSi alloy (Metglas) and operating in L-T mode (longitudinally magnetized and transversely poled) are reported, which exhibit an enhanced resonant ME coupling coefficient of ≈7000 V cm Oe , which is nearly seven times higher than the best result published previously, and also a superhigh magnetic sensitivity of 1.35 × 10 T (directly detected) at resonance at room temperature, representing a significant advance in bulk magnetoelectric materials. The theoretical analyses based on magnetic-circuit and equivalent-circuit methods show that the enhancement in ME coupling can be attributed to the reduction in resonance loss of laser-treated Metglas alloy due to nanocrystallization and the strong magnetic-flux-concentration effect in (1-1) configuration composites.
Articles you may be interested inTheoretical analysis on low frequency magneto-mechano-electric coupling behavior in piezo-unimorph/magnet composite J.A magneto-mechano-electric coupling equivalent circuit of piezoelectric bimorph/magnets composite cantilever
A single ring-shape ceramic plate piezoelectric actuator operated in shear-bending mode was proposed for high-temperature operation. The actuator was formed from BiScO3-PbTiO3 ceramic and polarized in the radial direction. A large bending displacement at the center of the actuator was piezoelectrically generated under an applied voltage in the thickness direction due to axial-symmetric shear strain of the ring-shape configuration. The displacement obtained at 200 °C was about 20 μm, 11–14 times that of a normal piezoelectric plate of identical size.
Colossal low-frequency resonant magnetomechanical (MM) and magnetoelectric (ME) coupling effects have been found in a three-phase composite made of Pb(Zr,Ti)O3 ceramic fibers/phosphor copper-sheet unimorph and NdFeB magnets. The experimental results revealed that the ferromagnetic/elastic/piezoelectric three-phase composite with a cantilever beam structure could show huge bending MM coefficient of ∼145.9 × 10−3/Oe (unit in bending radian per Oe) and ME voltage coefficient of ∼16 000 V/cm·Oe at the first-order bending resonance frequency of ∼5 Hz. The achieved results related to ME effect are at least one order of magnitude higher over those of other ME materials and devices reported ever. The extremely strong MM and ME couplings in the three-phase composite are due to strong magnetic force moment effect induced by the interaction between NdFeB magnets and the applied magnetic field, and further resonant enhancement via the strain-mediated phosphor copper-sheet with a relatively high mechanical quality factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.