Abstract:The reliable and accurate prediction of groundwater levels is important to improve water-use efficiency in the development and management of water resources. Three nonlinear time-series intelligence hybrid models were proposed to predict groundwater level fluctuations through a combination of ensemble empirical mode decomposition (EEMD) and data-driven models (i.e., artificial neural networks (ANN), support vector machines (SVM) and adaptive neuro fuzzy inference systems (ANFIS)), respectively. The prediction capability of EEMD-ANN, EEMD-SVM, and EEMD-ANFIS hybrid models was investigated using a monthly groundwater level time series collected from two observation wells near Lake Okeechobee in Florida. The statistical parameters correlation coefficient (R), normalized mean square error (NMSE), root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NS), and Akaike information criteria (AIC) were used to assess the performance of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results achieved from the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were compared with those from the ANN, SVM and ANFIS models. The three hybrid models (i.e., EEMD-ANN, EEMD-SVM, and EEMD-ANFIS) proved to be applicable to forecast the groundwater level fluctuations. The values of the statistical parameters indicated that the EEMD-ANFIS and EEMD-SVM models achieved better prediction results than the EEMD-ANN model. Meanwhile, the three models coupled with EEMD were found have better prediction results than the models that were not. The findings from this study indicate that the proposed nonlinear time-series intelligence hybrid models could improve the prediction capability in forecasting groundwater level fluctuations, and serve as useful and helpful guidelines for the management of sustainable water resources.
The Qaidam Basin is a unique and complex ecosystem, wherein elevation gradients lead to high spatial heterogeneity in vegetation dynamics and responses to environmental factors. Based on the remote sensing data of Moderate Resolution Imaging Spectroradiometer (MODIS), Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS), we analyzed the spatiotemporal variations of vegetation dynamics and responses to precipitation, accumulative temperature (AT) and soil moisture (SM) in the Qaidam Basin from 2001 to 2016. Moreover, the contribution of those factors to vegetation dynamics at different altitudes was analyzed via an artificial neural network (ANN) model. The results indicated that the Normalized Difference Vegetation Index (NDVI) values in the growing season showed an overall upward trend, with an increased rate of 0.001/year. The values of NDVI in low-altitude areas were higher than that in high-altitude areas, and the peak values of NDVI appeared along the elevation gradient at 4400–4600 m. Thanks to the use of ANN, we were able to detect the relative contribution of various environmental factors; the relative contribution rate of AT to the NDVI dynamic was the most significant (35.17%) in the low-elevation region (< 2900 m). In the mid-elevation area (2900–3900 m), precipitation contributed 44.76% of the NDVI dynamics. When the altitude was higher than 3900 m, the relative contribution rates of AT (39.50%) and SM (38.53%) had no significant difference but were significantly higher than that of precipitation (21.97%). The results highlight that the different environmental factors have various contributions to vegetation dynamics at different altitudes, which has important theoretical and practical significance for regulating ecological processes.
Focusing on water resources assessment in ungauged or sparse gauged areas, a comparative evaluation of areal precipitation was conducted by remote sensing data, limited gauged data, and a fusion of gauged data and remote sensing data based on machine learning. The artificial neural network (ANN) model was used to fuse the remote sensing precipitation and ground gauge precipitation. The correlation coefficient, root mean square deviation, relative deviation and consistency principle were used to evaluate the reliability of the remote sensing precipitation. The case study in the Qaidam Basin, northwest of China, shows that the precision of the original remote sensing precipitation product of Tropical Precipitation Measurement Satellite (TRMM)-3B42RT and TRMM-3B43 was 0.61, 72.25 mm, 36.51%, 27% and 0.70, 64.24 mm, 31.63%, 32%, respectively, comparing with gauged precipitation. The precision of corrected TRMM-3B42RT and TRMM-3B43 improved to 0.89, 37.51 mm, –0.08%, 41% and 0.91, 34.22 mm, 0.11%, 42%, respectively, which indicates that the data mining considering elevation, longitude and latitude as the main influencing factors of precipitation is efficient and effective. The evaluation of areal precipitation in the Qaidam Basin shows that the mean annual precipitation is 104.34 mm, 186.01 mm and 174.76 mm based on the gauge data, corrected TRMM-3B42RT and corrected TRMM-3B43. The results show many differences in the areal precipitation based on sparse gauge precipitation data and fusion remote sensing data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.