Abstract. Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field ( ≤ 10 m) and plant canopy (≤ 1 m) scale evapotranspiration (ET) monitoring. In this study, highresolution (sub-meter-scale) thermal infrared and multispectral shortwave data from aircraft are used to map ET over vineyards in central California with the two-source energy balance (TSEB) model and with a simple model having operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature). The latter uses contextual information within the image to scale between radiometric land surface temperature (T R ) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from 5 days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based measurements of sensible (H ) and latent heat (LE) flux or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EF = LE/(H + LE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on 2 of the 5 days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in daily water use estimates for these 2 days for the vineyards. Model sensitivity analysis demonstrated the high degree of sensitivity of the TSEB model to the accuracy of the T R data, while the DATTUTDUT model was insensitive to systematic errors in T R as is the case with contextual-based models. However, it is shown that the study domain and spatial resolution will significantly influence the ET estimation from the DATTUTDUT model. Future work is planned for developing a hybrid approach that leverages the strengths of both modeling schemes and is simple enough to be used operationally with high-resolution imagery.
Abstract:The reliable and accurate prediction of groundwater levels is important to improve water-use efficiency in the development and management of water resources. Three nonlinear time-series intelligence hybrid models were proposed to predict groundwater level fluctuations through a combination of ensemble empirical mode decomposition (EEMD) and data-driven models (i.e., artificial neural networks (ANN), support vector machines (SVM) and adaptive neuro fuzzy inference systems (ANFIS)), respectively. The prediction capability of EEMD-ANN, EEMD-SVM, and EEMD-ANFIS hybrid models was investigated using a monthly groundwater level time series collected from two observation wells near Lake Okeechobee in Florida. The statistical parameters correlation coefficient (R), normalized mean square error (NMSE), root mean square error (RMSE), Nash-Sutcliffe efficiency coefficient (NS), and Akaike information criteria (AIC) were used to assess the performance of the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models. The results achieved from the EEMD-ANN, EEMD-SVM and EEMD-ANFIS models were compared with those from the ANN, SVM and ANFIS models. The three hybrid models (i.e., EEMD-ANN, EEMD-SVM, and EEMD-ANFIS) proved to be applicable to forecast the groundwater level fluctuations. The values of the statistical parameters indicated that the EEMD-ANFIS and EEMD-SVM models achieved better prediction results than the EEMD-ANN model. Meanwhile, the three models coupled with EEMD were found have better prediction results than the models that were not. The findings from this study indicate that the proposed nonlinear time-series intelligence hybrid models could improve the prediction capability in forecasting groundwater level fluctuations, and serve as useful and helpful guidelines for the management of sustainable water resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.