A dataset of 282 meteorological stations including all of the ordinary and national basic/reference surface stations of north China is used to analyze the urbanization effect on surface air temperature trends. These stations are classified into rural, small city, medium city, large city, and metropolis based on the updated information of total population and specific station locations. The significance of urban warming effects on regional average temperature trends is estimated using monthly mean temperature series of the station group datasets, which undergo inhomogeneity adjustment. The authors found that the largest effect of urbanization on annual mean surface air temperature trends occurs for the large-city station group, with the urban warming being 0.16°C (10 yr)−1, and the effect is the smallest for the small-city station group with urban warming being only 0.07°C (10 yr)−1. A similar assessment is made for the dataset of national basic/reference stations, which has been widely used in regional climate change analyses in China. The results indicate that the regional average annual mean temperature series, as calculated using the data from the national basic/reference stations, is significantly impacted by urban warming, and the trend of urban warming is estimated to be 0.11°C (10 yr)−1. The contribution of urban warming to total annual mean surface air temperature change as estimated with the national basic/reference station dataset reaches 37.9%. It is therefore obvious that, in the current regional average surface air temperature series in north China, or probably in the country as a whole, there still remain large effects from urban warming. The urban warming bias for the regional average temperature anomaly series is corrected. After that, the increasing rate of the regional annual mean temperature is brought down from 0.29°C (10 yr)−1 to 0.18°C (10 yr)−1, and the total change in temperature approaches 0.72°C for the period analyzed.
International audiencePollen data from China for 6000 and 18,000 C-14 yr BP Were compiled and used to reconstruct palaeovegetation patterns, using complete taxon lists where possible and a biomization procedure that entailed the assignment of 645 pollen taxa to plant functional types. A set of 658 modern pollen samples spanning all biomes and regions provided a comprehensive test for this procedure and showed convincing agreement between reconstructed biomes and present natural vegetation types, both geographically and in terms of the elevation gradients in mountain regions of north-eastern and south-western China. The 6000 C-14 yr BP map confirms earlier studies in showing that the forest biomes in eastern China were systematically shifted northwards and extended westwards during the mid-Holocene. Tropical rain forest occurred on mainland China at sites characterized today by either tropical seasonal or broadleaved evergreen/warm mixed forest. Broadleaved evergreen/warm mixed forest occurred further north than today, and at higher elevation sites within the modern latitudinal range of this biome. The northern limit of temperate deciduous forest was shifted c. 800 km north relative to today. The 18,000 C-14 yr BP map shows that steppe and even desert vegetation extended to the modem coast of eastern China at the last glacial maximum, replacing today's temperate deciduous forest. Tropical forests were excluded from China and broadleaved evergreen/warm mixed forest had retreated to tropical latitudes, while taiga extended southwards to c. 43 degreesN
Understanding the long-term change of extreme temperature events is important to the detection and attribution of climate change. It is unclear, however, how much effect urbanization has had on trends of the extreme temperature indices series constructed based on the commonly used datasets on a subcontinental scale. Applying a homogenized daily temperature dataset of the national reference climate stations and basic meteorological stations, and a rural station network previously developed, urbanization effects on trends of extreme temperature indices in mainland China for the time period 1961–2008 are evaluated. It is found that 1) the country-averaged annual- and seasonal-mean extreme temperature indices series generally experience statistically significant trends; 2) annual-mean urbanization effects in the country as a whole are statistically significant for daily minimum temperature (Tmin), maximum temperature (Tmax), and mean temperature of Tmin and Tmax (Tavg), reaching 0.070°, 0.023°, and 0.047°C (10 yr)−1, respectively, with the largest values for annual-mean Tmin occurring in north China; 3) annual- and seasonal-mean urbanization effects for the declining diurnal temperature range (DTR) are highly significant, and the largest seasonal-mean DTR decline because of urbanization occurs in winter and spring; 4) annual-mean urbanization effects for the lowest Tmin, summer days, tropical nights, and frost days series are significant, but an insignificant urbanization effect is detected for icing days series; 5) urbanization has led to a highly significant decline of annual cold nights at a rate of −1.485 days (10 yr)−1 and a highly significant increase of annual warm nights at a rate of 2.264 days (10 yr)−1. Although urbanization effects are also significant for cold days and warm days, they are relatively smaller, and 6) the smallest absolute values of annual-mean urbanization effects for most of the indices series are found to dominantly appear during 1966–76, a well-known deurbanization period resulting from the Cultural Revolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.