Interleukin-12 (IL-12) has emerged as one of the most potent agents for anti-tumor immunotherapy. However, potentially lethal toxicity associated with systemic administration of IL-12 precludes its clinical application. Here we redesign the molecule in such a way that its anti-tumor efficacy is not compromised, but toxic effects are eliminated. Deletion of the N-terminal signal peptide of IL-12 can effect such a change by preventing IL-12 secretion from cells. We use a newly designed tumor-targeted oncolytic adenovirus (Ad-TD) to deliver non-secreting (ns) IL-12 to tumor cells and examine the therapeutic and toxic effects in Syrian hamster models of pancreatic cancer (PaCa). Strikingly, intraperitoneal delivery of Ad-TD-nsIL-12 significantly enhanced survival of animals with orthotopic PaCa and cured peritoneally disseminated PaCa with no toxic side effects, in contrast to the treatment with Ad-TD expressing unmodified IL-12. These findings offer renewed hope for development of IL-12-based treatments for cancer.
PRSS3 plays an important role in the progression, metastasis and prognosis of human pancreatic cancer. Targeting the PRSS3 signalling pathway may be an effective and feasible approach for treatment of this lethal cancer.
Evidences have shown that lncRNAs involve in the initiation and progression of various cancers including esophageal squamous cell carcinoma (ESCC). The aberrant expression of lncRNA MALAT1 was investigated in 106 paired ESCC tissues and adjacent non-cancerous tissues by qRT-PCR. Down-regulated MALAT1 and Ezh2 over-expression plasmid were constructed respectively to analyze the expression of β-catenin, Lin28 and Ezh2 genes. We found that the MALAT1 expression level was higher in human ESCC tissues (P=0.0011), which was closely correlated with WHO grade (P=0.0395, P=0.0331), lymph node metastasis (P=0.0213) and prognosis (P=0.0294). Silencing of MALAT1 expression inhibited cell proliferation, migration and tumor sphere formation, while increasing cell apoptosis of esophageal cancer in vitro. Down-regulation of MALAT1 decreased the expression of β-catenin, Lin28 and Ezh2 genes, while over-expressed Ezh2 combined with MALAT1 down-regulation completely reversed the si-MALAT1-mediated repression of β-catenin and Lin28 in esophageal cancer cells. Animal experiments showed that knockdown of MALAT1 decreased tumor formation and improved survival. MALAT1 promotes the initiation and progression of ESCC, suggesting that inhibition of MALAT1 might be a potential target for treatment of ESCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.