Thyroid nodules are very common all over the world, and China is no exception. Ultrasound plays an important role in determining the risk stratification of thyroid nodules, which is critical for clinical management of thyroid nodules. For the past few years, many versions of TIRADS (Thyroid Imaging Reporting and Data System) have been put forward by several institutions with the aim to identify whether nodules require fine-needle biopsy or ultrasound follow-up. However, no version of TIRADS has been widely adopted worldwide till date. In China, as many as ten versions of TIRADS have been used in different hospitals nationwide, causing a lot of confusion. With the support of the Superficial Organ and Vascular Ultrasound Group of the Society of Ultrasound in Medicine of the Chinese Medical Association, the Chinese-TIRADS that is in line with China's national conditions and medical status was established based on literature review, expert consensus, and multicenter data provided by the Chinese Artificial Intelligence Alliance for Thyroid and Breast Ultrasound.
Long non-coding RNA (lncRNA) activated by TGF-β (ATB) has been reported to be widely expressed in different types of cancer; however, the function of ATB in lung cancer remains unclear. In order to elucidate the role of ATB in lung cancer, reverse transcription-quantitative polymerase chain reaction was used to detect the expression of ATB in tumor tissues and corresponding non-tumor lung tissues from 32 patients with lung cancer. Furthermore, the association between the expression of ATB and clinical characteristics was investigated. Cell proliferation was assessed using a cell counting kit-8 assay and cell migration was assessed using a wound healing assays. Epithelial-mesenchymal-transition and mitogen-activated protein kinase signaling pathway activity was examined using western blotting. It was demonstrated that ATB was highly expressed in lung cancer tissues compared with noncancerous tissues, and associated with tumor size and metastasis. It was also demonstrated that ATB was highly expressed in the lung cancer cell lines, A549 and HCC827, compared with the HBE-1 cell line. Suppression of ATB significantly inhibited the proliferation and migratory rate of lung cancer cells. The protein expression levels of p38, E-cadherin and N-cadherin were altered by suppression of ATB expression. Overall, the present study demonstrated that ATB may promote the development of lung cancer.
• Two-dimensional shear wave elastography showed good diagnostic accuracy in assessing liver fibrosis. • Diagnostic performance did not differ significantly between the index and validation cohorts. • Two-dimensional shear wave elastography assisted in excluding liver fibrosis and cirrhosis.
SummaryEmbryonic stem cell (ESC) pluripotency is controlled by defined transcription factors. During cellular differentiation, ESCs undergo a global epigenetic reprogramming. Female ESCs exemplify this process as one of the two X-chromosomes is globally silenced during X chromosome inactivation (XCI) to balance the X-linked gene disparity with XY males. The pluripotent factor OCT4 regulates XCI by triggering X chromosome pairing and counting. OCT4 directly binds Xite and Tsix, which encode two long noncoding RNAs (lncRNAs) that suppress the silencer lncRNA, Xist. To control its activity as a master regulator in pluripotency and XCI, OCT4 must have chromatin protein partners. Here we show that BRD4, a member of the BET protein subfamily, interacts with OCT4. BRD4 occupies the regulatory regions of pluripotent genes and the lncRNAs of XCI. BET inhibition or depletion of BRD4 reduces the expression of many pluripotent genes and shifts cellular fate showing that BRD4 is pivotal for transcription in ESCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.