Background/AimsThe longitudinal relationships of within-individual hormone and anthropometric changes during puberty have not ever been fully described. The objectives of this study were to demonstrate that 3 monthly urine collection was feasible in young adolescents and to utilise liquid chromatography-tandem mass spectrometry assay methods for serum and urine testosterone (T), estradiol (E2) and luteinizing hormone (LH) in adolescents by relating temporal changes in urine and serum hormones over 12 months to standard measures of pubertal development.MethodsA community sample of 104 adolescents (57 female) was studied over 12 months with annual anthropometric assessment, blood sampling and self-rated Tanner staging and urine collected every 3 months. Serum and urine sex steroids (T, E2) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and LH by immunoassay.ResultsA high proportion (92%) of scheduled samples were obtained with low attrition rate of 6.7% over the 12 months. Urine hormone measurements correlated cross-sectionally and longitudinally with age, anthropometry and Tanner stage.ConclusionWe have developed a feasible and valid sampling methodology and measurements for puberty hormones in urine, which allows a sampling frequency by which individual pubertal progression in adolescents can be described in depth.
Accurate measurement of testosterone is important for reproductive endocrinology research, but the validity of direct (nonextraction) testosterone immunoassays, developed and validated for human serum, has not been appraised for application to mouse serum or steroidogenic tissue extracts. Testosterone was measured in serum and extracts of testis or ovary from male and female wild-type mice by 2 commercial direct testosterone immunoassays, with and without preassay extraction, and by the liquid chromatography, tandem mass spectrometry reference method. Results were compared hierarchically by correlation (Kendall's τ), regression (Passing-Bablok), and deviance (Bland-Altman) analysis, under the null hypothesis of perfect agreement between assays (slope = 1, intercept and deviation = 0). For mouse serum, immunoassays displayed an upward bias with performance better for male vs female sera and, within gender, improved by preassay extraction relative to liquid chromatography, tandem mass spectrometry. Testosterone was detectable in all serum samples, but few (male 54%, female 9%) were accurate (within 20% of the reference measurement). For mouse testis extracts, immunoassays were biased upwards, and preassay extraction improved immunoassay performance. Although testosterone was detectable in all extracts, a minority (45%) was accurate. For mouse ovary extracts, all correlations were poor with severe, upward bias, and while testosterone was detectable in all samples, virtually none were accurate. We conclude that these direct testosterone immunoassay kits provide relatively, but not absolutely, accurate results with male mouse serum and testis extracts but not with female mouse serum and ovary extracts, with performance improved by preassay extraction. Whether relative accuracy is fit for purpose depends on the experimental aims, design, and interpretation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.