This study shows that the NLRP3 inflammasome is up-regulated in myocardial fibroblasts post-MI, and may be a significant contributor to infarct size development during ischaemia-reperfusion.
Nuclear factor kappa-B (NFkappaB), a redox-sensitive transcription factor regulating a battery of inflammatory genes, has been indicated to play a role in the development of numerous pathological states. Activation of NFkappaB induces gene programs leading to transcription of factors that promote inflammation, such as leukocyte adhesion molecules, cytokines, and chemokines, although some few substances with possible anti-inflammatory effects are also NFkappaB regulated. The present article reviews basic regulation of NFkappaB and its activation, cell biological effects of NFkappaB activation and the role of NFkappaB in apoptosis. Evidence involving NFkappaB as a key factor in the pathophysiology of ischemia-reperfusion injury and heart failure is discussed. Although activation of NFkappaB induces pro-inflammatory genes, it has lately been indicated that the transcription factor is involved in the signaling of endogenous myocardial protection evoked by ischemic preconditioning. A possible role of NFkappaB in the development of atherosclerosis and unstable coronary syndromes is discussed. Nuclear factor kappa-B may be a new therapeutic target for myocardial protection.
CCN2/connective tissue growth factor (CTGF), a CCN family matricellular protein repressed in healthy hearts after birth, is induced in heart failure of various etiologies. Multiple cellular and biological functions have been assigned to CCN2/CTGF depending on cellular context. However, the functions and mechanisms of action of CCN2/CTGF in the heart as well as its roles in cardiac physiology and pathophysiology remain unknown. Transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were generated and compared with nontransgenic littermate control (NLC) mice. Tg-CTGF mice displayed slightly lower cardiac mass and inconspicuous increase of myocardial collagen compared with NLC mice but no evidence of contractile dysfunction. Analysis of the myocardial transcriptome by DNA microarray revealed activation of several distinct gene programs in Tg-CTGF hearts involved in cardioprotection and growth inhibition. Indeed, Tg-CTGF mice subjected to ischemia-reperfusion injury by in situ transient occlusion of the left anterior descending coronary artery in vivo displayed reduced vulnerability with markedly diminished infarct size. These findings were recapitulated in isolated hearts perfused with recombinant human (h)CTGF before the ischemia-reperfusion procedure. Consistently, Tg-CTGF hearts, as well as isolated adult cardiac myocytes exposed to recombinant hCTGF, displayed enhanced phosphorylation and activity of the Akt/p70S6 kinase/GSK-3β salvage kinase pathway and induction of several genes with reported cardioprotective functions. Inhibition of Akt activities also prevented the cardioprotective phenotype of hearts from Tg-CTGF mice. This report provides novel evidence that CTGF confers cardioprotection by salvage phosphokinase signaling leading to inhibition of GSK-3β activities, activation of phospho-SMAD2, and reprogramming of gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.