Objective: The objective of the present investigation was to fabricate and characterize allopurinol loaded chitosan nanoparticles (A-CNPs) for sustained release of drug.
Methods: The allopurinol loaded chitosan nanoparticles were successfully prepared by employing the ionotropic gelation method. Further, particle size (PS), polydispersity index (PDI), zeta potential (ZP), Differential Scanning Calorimetry (DSC), entrapment efficiency (EE), Transmission Electron Microscopy (TEM), in vitro drug release, X-Ray Diffraction (XRD) and Fourier transform infrared (FTIR) were used for evaluating formulated A-CNPs
Results: A-CNPs was successfully prepared and the particle size, polydispersity index, ZP and entrapment efficiency were found to be 375.3±10.1 nm, 0.362±0.01 and 32.5±2.7 mV and 52.56±0.10% respectively. In vitro release profile of A-CNPs showed sustained release and Higuchi model was found to be best fit for drug release kinetics. FTIR study depicted no chemical interaction between pure drug allopurinol (AL) and other excipients.
Conclusion: The sustained release formulation of allopurinol was successfully prepared using HMW chitosan and evaluated for different parameters.
The aim of present research work was to design, fabricate, optimize, and evaluate allopurinol (ALLO)-loaded bovine serum albumin nanoparticles (ABNPs) for kidney targeting of the drug and exploring the potential of fabricated ABNPs for management of hyperuricemiarelated nephrolithiasis. ABNP formulation was prepared by employing desolvation technique, and its optimization was conducted by 2-factor-3-level central composite design (CCD) in order to achieve minimum particle size (PSA) and polydispersity index (PDI), maximum entrapment efficiency (EE), and zeta potential (ZP). Further, the optimized formulation (ABNPs opt ) was also assessed for in vitro drug release study, TEM, DSC, XRD analysis, FTIR spectroscopy, and in vivo animal study. The in vivo study revealed that after 2 h of ABNPs opt administration, a significant concentration of ALLO was present in kidney (21.26-fold) as compared with serum while in case of standard pure drug group; no drug was seen in mice kidney and serum post 2 h administration, which indicates successful targeting of ALLO by formulating its albumin nanoparticles. Also, uric acid and pH levels were measured in serum and urine samples of mice which showed significant (P < 0.01) efficacy of ABNPs opt formulation in management of hyperuricemia-related nephrolithiasis. Histological studies on kidney samples also confirmed these outcomes. Findings of present study indicate higher kidney uptake of allopurinol from formulated ABNPs opt , which could be due to the specificity of albumin polymer for cubilin and megalin receptors, and it also serves as effective strategy in management of hyperuricemicrelated nephrolithiasis.
Purpose The major short coming of conventional therapy system is that they can't deliver the therapeutics specifically to a site within the body without producing nonspecific toxicity. Present research aimed at developing kidney targeted allopurinol (AP) loaded chitosan coated magnetic nanoparticles (A-MNPs) for the management of hyperuricemic nephropathy manifested in the form of nephrolithiasis. Methods The work includes preparation of magnetic nanoparticles by chemical co-precipitation method and evaluation of the prepared batches for particle size analysis, Transmission electron microscopy, entrapment efficiency, in-vitro release study etc. Further, FTIR spectroscopy, X-ray diffraction, Differential Scanning Calorimetry, Vibrational sample magnetometer (VSM) and in-vivo animal studies were also performed.Results VSM analysis demonstrates that the prepared nanoparticles exhibit superparamagnetic magnetic behaviour which was retained even after coating by chitosan. In-vivo studies of A-MNPs showed 19.07-fold increase in kidney uptake of AP as compared to serum post 2 h of administration in mice whereas no drug was detected in kidney and serum post 2 h administration of pure drug (free-form) indicating successful targeting to kidney as well as sustained release of AP from the formulated A-MNPs. The significant (p < 0.01) effectiveness of A-MNPs in management of hyperuricemic nephrolithiasis was observed through estimating pH and uric acid levels in urine and serum samples of mice. These findings were also confirmed by histological examination of isolated kidney samples. Conclusion Present investigation signifies that a simple external magnetic field is enough for targeting allopurinol to kidneys by formulating A-MNPs which further offers an effective approach for management of hyperuricemic nephrolithiasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.