Electronic cigarettes (e-cigarettes, vaping products) have become increasingly popular, with recent increases in use associated with closed systems delivering higher concentrations of nicotine. Most vaping products designed as an alternative to combustible cigarettes contain nicotine. A number of published studies have examined the reported concentrations of nicotine in vaping liquids (e-liquids) and found discrepancies between labelled and measured levels. Some discrepancy can also be explained by the lack of stability of nicotine in these types of products. Recently, a chemical analysis method for the quantitative determination of low and high levels of nicotine in vaping liquids was developed. This method uses dilution with acetonitrile prior to analysis with gas chromatograph mass spectrometry (GC-MS) in single ion monitoring mode (SIM). The developed method was validated using a laboratory-prepared vaping liquid as well as commercially available, nicotine-free products fortified with nicotine in the laboratory. The method detection limit (MDL) and the limit of quantitation (LOQ) for nicotine were calculated to be 0.002 mg/mL and 0.006 mg/mL, respectively. The newly developed method was applied to quantify nicotine in commercially available vaping liquids of various flavour profiles and across a wide range of nicotine concentrations, including those with nicotine salts. Furthermore, a subset of vaping liquids were analyzed to elucidate nicotine stability in various product subtypes. After a period of six months of accelerated storage to mimic one year, the overall mean percent of the original nicotine concentration remaining in the salt-based vaping products was 85% (minimum 64%, maximum 99%) while in the free-base nicotine products it was 74% (minimum 31%, maximum 106%). Nicotine stability in vaping liquids was found to be influenced by the nicotine form (pH) of formulation and its chemical composition. Non-targeted, qualitative analysis of chemical composition of vaping products showed that most constituents were identified and found to be remaining in the products following stability trials; however, three new compounds were tentatively identified in some vaping liquids at the end of the stability trials. Stability studies and the accurate quantitation of nicotine in vaping products can help inform product standards related to the safety, quality and utility of vaping products as a smoking cessation tool.
Introduction Synthetic musk compounds are widely used as fragrances in many consumer products, however, information on human exposure and health effects is limited. Also, analytical methods for their quantification in biological matrices are limited. Objective In this study, an integrated method was developed and validated for the analysis of selected synthetic musk compounds in human serum. Methodology The method is based on liquid-liquid extraction (LLE), sample clean-up by solid-phase extraction (SPE), and separation and detection by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Results The method demonstrated good recoveries (86%-105%) and high sensitivity, with low method detection limits (MDLs) ranging from 0.04-0.17 µg/L. The method was applied to the analysis of 10 synthetic musk compounds in 40 serum samples collected from Canadian women aged 20-44 years (20 individual samples collected in 2014 and 20 pooled samples collected in 2006). The most commonly detected compound was Galaxolide (HHCB), with median concentrations of 0.59 µg/L in samples collected in 2006, and 0.34 µg/L for samples collected in 2014. Musk ketone (MK) was not detected in any of the samples collected in 2006, but was detected in 60% of the samples collected in 2014 with median concentration of 0.29 µg/L. Tonalide (AHTN) was detected in only one sample above its MDL (0.12 µg/L). Conclusion This is the first study in Canada to report levels of synthetic musks in human. The data generated from this study has been used in risk screening assessment by Environment and Climate Change Canada and Health Canada.
Extensive use of synthetic musk compounds (SMs) in numerous consumer and personal care products has resulted in direct human exposures via dermal absorption, inhalation of contaminated dust and volatilized fragrances, and oral ingestion of contaminated foods and liquids. SMs and their metabolites are lipophilic, hence commonly detected in various biological matrices such as blood, breast milk and adipose tissue. Appropriate analytical techniques are needed to detect and quantify SMs in biological matrices to assess their potential effects on human health. Different methods to process and analyze SMs in biological matrices, including sample-pretreatment, solvent extraction, cleanup, and instrumental analysis, are presented in this review. The concentration levels of selected musk compounds in biological samples from different countries/regions are summarized. Finally, research gaps and questions pertaining to the analysis of SMs are identified and suggestions made for future research studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.