MDC1 plays a critical role in the DNA damage response (DDR) by interacting directly with several factors including γ-H2AX. However, the mechanism by which MDC1 is recruited to damaged sites remains elusive. Here, we show that MDC1 interacts with a helix–loop–helix (HLH)-containing protein called inhibitor of DNA-binding 3 (ID3). In response to double-strand breaks (DSBs) in the genome, ATM phosphorylates ID3 at serine 65 within the HLH motif, and this modification allows a direct interaction with MDC1. Moreover, depletion of ID3 results in impaired formation of ionizing radiation (IR)-induced MDC1 foci, suppression of γ-H2AX-bound MDC1, impaired DSB repair, cellular hypersensitivity to IR, and genomic instability. Disruption of the MDC1–ID3 interaction prevents accumulation of MDC1 at sites of DSBs and suppresses DSB repair. Thus, our study uncovers an ID3-dependent mechanism of recruitment of MDC1 to DNA damage sites and suggests that the ID3–MDC1 interaction is crucial for DDR.
Homologous recombination (HR) is critical for error-free repair of DNA double-strand breaks. Chromatin loading of RAD51, a key protein that mediates the recombination, is a crucial step in the execution of the HR repair. Here, we present evidence that SUMOylation of RAD51 is crucial for the RAD51 recruitment to chromatin and HR repair. We found that topoisomerase 1-binding arginine/serine-rich protein (TOPORS) induces the SUMOylation of RAD51 at lysine residues 57 and 70 in response to DNA damaging agents. The SUMOylation was facilitated by an ATM-induced phosphorylation of TOPORS at threonine 515 upon DNA damage. Knockdown of TOPORS or expression of SUMOylation-deficient RAD51 mutants caused reduction in supporting normal RAD51 functions during the HR repair, suggesting the physiological importance of the modification. We found that the SUMOylation-deficient RAD51 reduces the association with its crucial binding partner BRCA2, explaining its deficiency in supporting the HR repair. These findings altogether demonstrate a crucial role for TOPORS-mediated RAD51 SUMOylation in promoting HR repair and genomic maintenance.
Terminally differentiated cells have a reduced capacity to repair double-stranded breaks (DSB) in DNA, however, the underlying molecular mechanism remains unclear. Here, we show that miR-22 is upregulated during postmitotic differentiation of human breast MCF-7 cells, hematopoietic HL60 and K562 cells. Increased expression of miR-22 in differentiated cells was associated with decreased expression of MDC1, a protein that plays a key role in the response to DSBs. This downregulation of MDC1 was accompanied by reduced DSB repair, impaired recruitment of the protein to the site of DNA damage following IR. Conversely, inhibiting miR-22 enhanced MDC1 protein levels, recovered MDC1 foci, fully rescued DSB repair in terminally differentiated cells. Moreover, MDC1 levels, IR-induced MDC1 foci, and the efficiency of DSB repair were fully rescued by siRNA-mediated knockdown of c-Fos in differentiated cells. These findings indicate that the c-Fos/miR-22/MDC1 axis plays a relevant role in DNA repair in terminally differentiated cells, which may facilitate our understanding of molecular mechanism underlying the downregulating DNA repair in differentiated cells.
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
The Hsp70-binding protein 1 (HspBP1) belongs to a family of co-chaperones that regulate Hsp70 activity and whose biological significance is not well understood. In the present study, we show that when HspBP1 is either knocked down or overexpressed in BRCA1-proficient breast cancer cells, there were profound changes in tumorigenesis, including anchorage-independent cell growth in vitro and in tumor formation in xenograft models. However, HspBP1 did not affect tumorigenic properties in BRCA1-deficient breast cancer cells. The mechanisms underlying HspBP1-induced tumor suppression were found to include interactions with BRCA1 and promotion of BRCA1-mediated homologous recombination DNA repair, suggesting that HspBP1 contributes to the suppression of breast cancer by regulating BRCA1 function and thereby maintaining genomic stability. Interestingly, independent of BRCA1 status, HspBP1 facilitates cell survival in response to ionizing radiation (IR) by interfering with the association of Hsp70 and apoptotic protease-activating factor-1. These findings suggest that decreased HspBP1 expression, a common occurrence in high-grade and metastatic breast cancers, leads to genomic instability and enables resistance to IR treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.